|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
芯片制造的过程就如同用乐高盖房子一样,先有晶圆作为地基,再层层往上叠的芯片制造流程后,就可产出必要的 IC 芯片(这些会在后面介绍)。然而,没有设计图,拥有再强制造能力都没有用,因此,建筑师的角色相当重要。但是 IC 设计中的建筑师究竟是谁呢?本文接下来要针对 IC 设计做介绍。: F3 F- V5 [ |) B8 X
# `1 E8 J! O) C
1 Q: K- X8 Z2 k' j' W3 B在 IC 生产流程中,IC 多由专业 IC 设计公司进行规划、设计,像是联发科、高通、Intel 等知名大厂,都自行设计各自的 IC 芯片,提供不同规格、效能的芯片给下游厂商选择。因为 IC 是由各厂自行设计,所以 IC 设计十分仰赖工程师的技术,工程师的素质影响着一间企业的价值。然而,工程师们在设计一颗 IC 芯片时,究竟有那些步骤?设计流程可以简单分成如下。
1 J$ v5 ?( `: |3 y3 e
% k9 h u' x% J0 x关于芯片的性能分析和介绍0 M# V1 C2 A- B' _. q" a G$ k
& d' F2 L% m7 v2 [( d7 n( d4 Z4 Z
设计第一步,订定目标
9 n2 R( X' `( h: h. C [/ f7 {* N+ O0 U v
在 IC 设计中,最重要的步骤就是规格制定。这个步骤就像是在设计建筑前,先决定要几间房间、浴室,有什么建筑法规需要遵守,在确定好所有的功能之后在进行设计,这样才不用再花额外的时间进行后续修改。IC 设计也需要经过类似的步骤,才能确保设计出来的芯片不会有任何差错。$ Y% k- U* R9 e" v' M
R: m4 c+ ^) z2 B5 Z# U3 D) q
规格制定的第一步便是确定 IC 的目的、效能为何,对大方向做设定。接着是察看有哪些协定要符合,像无线网卡的芯片就需要符合 IEEE 802.11 等规范,不然,这芯片将无法和市面上的产品相容,使它无法和其他设备连线。最后则是确立这颗 IC 的实作方法,将不同功能分配成不同的单元,并确立不同单元间连结的方法,如此便完成规格的制定。8 _8 c1 o2 |8 d+ a y/ Q% m0 F0 F& P
) P2 |1 Q9 k f. c9 \设计完规格后,接着就是设计芯片的细节了。这个步骤就像初步记下建筑的规画,将整体轮廓描绘出来,方便后续制图。在 IC 芯片中,便是使用硬体描述语言(HDL)将电路描写出来。常使用的 HDL 有 Verilog、VHDL 等,藉由程式码便可轻易地将一颗 IC 地功能表达出来。接着就是检查程式功能的正确性并持续修改,直到它满足期望的功能为止。' G+ i3 I J* U4 z
9 |. r3 s) s5 _3 H9 b2 O( z关于芯片的性能分析和介绍7 S0 ^. A9 I4 R! v1 x! `7 }, _" _
* w9 T# ~; E* i" I3 f7 N32 bits 加法器的 Verilog 范例" w/ m" K9 u r3 T2 j& \) s
8 z- y+ |) n8 O C8 j' T) h有了电脑,事情都变得容易. Z2 C: {/ s9 V( t* B+ q
& c" j! x' J7 r" C/ {
有了完整规画后,接下来便是画出平面的设计蓝图。在 IC 设计中,逻辑合成这个步骤便是将确定无误的 HDL code,放入电子设计自动化工具(EDA tool),让电脑将 HDL code 转换成逻辑电路,产生如下的电路图。之后,反覆的确定此逻辑闸设计图是否符合规格并修改,直到功能正确为止。
* A- c3 W1 B" h5 T5 J
. n* u8 [9 ]- O+ J关于芯片的性能分析和介绍
5 {2 h6 o$ J% E0 k7 K0 _& m
- ~, n* y& F, ?) g控制单元合成后的结果
, i6 W; [8 T& i7 s. O o. g
7 V+ V1 k5 z6 C+ @! C; _最后,将合成完的程式码再放入另一套 EDA tool,进行电路布局与绕线(Place And Route)。在经过不断的检测后,便会形成如下的电路图。图中可以看到蓝、红、绿、黄等不同颜色,每种不同的颜色就代表着一张光罩。至于光罩究竟要如何运用呢?
. E1 U1 o P! E! A! ~' ~
1 W8 ~- o4 D5 e: K" t* y3 c# { r: `关于芯片的性能分析和介绍
' v8 w* ~9 U2 O6 g# Y; R% Y; `9 X
" s: p( ?8 k4 e+ x常用的演算芯片- FFT 芯片,完成电路布局与绕线的结果
+ O ?/ t' T: a R. d- z
- [' j: C4 h. d7 ~; S0 k6 w层层光罩,叠起一颗芯片
& s) b( A2 _& ^: k/ r: z( I( H0 ]2 J2 V! v4 T
首先,目前已经知道一颗 IC 会产生多张的光罩,这些光罩有上下层的分别,每层有各自的任务。下图为简单的光罩例子,以积体电路中最基本的元件 CMOS 为范例,CMOS 全名为互补式金属氧化物半导体(Complementary metal–oxide–semiconductor),也就是将 NMOS 和 PMOS 两者做结合,形成 CMOS。至于什么是金属氧化物半导体(MOS)?这种在芯片中广泛使用的元件比较难说明,一般读者也较难弄清,在这里就不多加细究。
8 d+ H6 A* R, Z4 g' K$ ]% t8 L* n0 N
下图中,左边就是经过电路布局与绕线后形成的电路图,在前面已经知道每种颜色便代表一张光罩。右边则是将每张光罩摊开的样子。制作是,便由底层开始,依循上一篇 IC 芯片的制造中所提的方法,逐层制作,最后便会产生期望的芯片了。3 V4 K5 b) e1 v- m( |' m) S4 G4 L. a; e
% X8 U& r5 J% y关于芯片的性能分析和介绍6 P/ [' a: b: W) K
0 ]; H6 h/ s( U: ~# b$ ~" L: [至此,对于 IC 设计应该有初步的了解,整体看来就很清楚 IC 设计是一门非常复杂的专业,也多亏了电脑辅助软体的成熟,让 IC 设计得以加速。IC 设计厂十分依赖工程师的智慧,这里所述的每个步骤都有其专门的知识,皆可独立成多门专业的课程,像是撰写硬体描述语言就不单纯的只需要熟悉程式语言,还需要了解逻辑电路是如何运作、如何将所需的演算法转换成程式、合成软体是如何将程式转换成逻辑闸等问题。
" F ~2 U* j' P" {& j) x! A) j- j
其中主要半导体设计公司有英特尔、高通、博通、英伟达、美满、赛灵思、Altera、联发科、海思、展讯、中兴微电子、华大、大唐、智芯、敦泰、士兰、中星、格科等。
5 i/ C' s- R" W4 c4 h0 C
% c) z: k# |9 Q+ d1 x% p, ^; v0 }二、什么是晶圆?
& c4 P$ O9 f1 Q7 A6 H$ P, O, B4 F* r$ @9 G& Q6 S5 |+ g
在半导体的新闻中,总是会提到以尺寸标示的晶圆厂,如 8 寸或是 12 寸晶圆厂,然而,所谓的晶圆到底是什么东西?其中 8 寸指的是什么部分?要产出大尺寸的晶圆制造又有什么难度呢?以下将逐步介绍半导体最重要的基础——「晶圆」到底是什么。
8 C9 X2 p) C/ k3 O3 g, Z* w. s2 K# C
晶圆(wafer),是制造各式电脑芯片的基础。我们可以将芯片制造比拟成用乐高积木盖房子,藉由一层又一层的堆叠,完成自己期望的造型(也就是各式芯片)。然而,如果没有良好的地基,盖出来的房子就会歪来歪去,不合自己所意,为了做出完美的房子,便需要一个平稳的基板。对芯片制造来说,这个基板就是接下来将描述的晶圆。6 f ^2 W. N, J: e7 }6 R
" u% y+ [' ?+ S) X# x* a. P
(Souse:Flickr/Jonathan Stewart CC BY 2.0)3 L+ } `! d2 E/ x$ B
: p# ?4 n" |! d
首先,先回想一下小时候在玩乐高积木时,积木的表面都会有一个一个小小圆型的凸出物,藉由这个构造,我们可将两块积木稳固的叠在一起,且不需使用胶水。芯片制造,也是以类似这样的方式,将后续添加的原子和基板固定在一起。因此,我们需要寻找表面整齐的基板,以满足后续制造所需的条件。
, t+ F, l( s4 C- w" [* L% l5 ^; l; k* Q+ Q
在固体材料中,有一种特殊的晶体结构──单晶(Monocrystalline)。它具有原子一个接着一个紧密排列在一起的特性,可以形成一个平整的原子表层。因此,采用单晶做成晶圆,便可以满足以上的需求。然而,该如何产生这样的材料呢,主要有二个步骤,分别为纯化以及拉晶,之后便能完成这样的材料。
# Q. J( {4 B# C, x8 S5 G
4 m$ }1 I+ V5 B1 o; |" L( u如何制造单晶的晶圆/ `& i7 X& ~2 y/ S
3 Y$ K* n, O& P1 {
纯化分成两个阶段,第一步是冶金级纯化,此一过程主要是加入碳,以氧化还原的方式,将氧化硅转换成 98% 以上纯度的硅。大部份的金属提炼,像是铁或铜等金属,皆是采用这样的方式获得足够纯度的金属。但是,98% 对于芯片制造来说依旧不够,仍需要进一步提升。因此,将再进一步采用西门子制程(Siemens process)作纯化,如此,将获得半导体制程所需的高纯度多晶硅。
% k" K: N ^ Y! f0 _8 K$ h) s* m- F: U6 O3 ]7 h9 K
关于芯片的性能分析和介绍
7 U: o( x/ x$ A) N% i9 D- k1 @: q9 @
接着,就是拉晶的步骤。首先,将前面所获得的高纯度多晶硅融化,形成液态的硅。之后,以单晶的硅种(seed)和液体表面接触,一边旋转一边缓慢的向上拉起。至于为何需要单晶的硅种,是因为硅原子排列就和人排队一样,会需要排头让后来的人该如何正确的排列,硅种便是重要的排头,让后来的原子知道该如何排队。最后,待离开液面的硅原子凝固后,排列整齐的单晶硅柱便完成了。( ?: J' R$ j+ c6 J1 \$ y
( A' ?- n" @( _' C/ ?% }" ~
然而,8寸、12寸又代表什么东西呢?他指的是我们产生的晶柱,长得像铅笔笔桿的部分,表面经过处理并切成薄圆片后的直径。至于制造大尺寸晶圆又有什么难度呢?如前面所说,晶柱的制作过程就像是在做棉花糖一样,一边旋转一边成型。有制作过棉花糖的话,应该都知道要做出大而且扎实的棉花糖是相当困难的,而拉晶的过程也是一样,旋转拉起的速度以及温度的控制都会影响到晶柱的品质。也因此,尺寸愈大时,拉晶对速度与温度的要求就更高,因此要做出高品质 12 寸晶圆的难度就比 8 寸晶圆还来得高。6 K; ]! h f2 o* k* D
. q0 e2 k+ `0 n4 L5 ~
只是,一整条的硅柱并无法做成芯片制造的基板,为了产生一片一片的硅晶圆,接着需要以钻石刀将硅晶柱横向切成圆片,圆片再经由抛光便可形成芯片制造所需的硅晶圆。经过这么多步骤,芯片基板的制造便大功告成,下一步便是堆叠房子的步骤,也就是芯片制造。至于该如何制作芯片呢?
' Y2 T' s$ B Y% V" i# O9 A' ~; M! S" ~% ^. X5 T; p
三、层层堆叠打造的芯片
4 \1 T$ `6 i, ?% N- f1 p
; R' j5 u' h u+ q7 ], [* _在介绍过硅晶圆是什么东西后,同时,也知道制造 IC 芯片就像是用乐高积木盖房子一样,藉由一层又一层的堆叠,创造自己所期望的造型。然而,盖房子有相当多的步骤,IC 制造也是一样,制造 IC 究竟有哪些步骤?本文将将就 IC 芯片制造的流程做介绍。
3 J9 x: ~' _# J% `" R2 @9 |) H" l7 D8 D% ?) G) h- q
在开始前,我们要先认识 IC 芯片是什么。IC,全名积体电路(Integrated Circuit),由它的命名可知它是将设计好的电路,以堆叠的方式组合起来。藉由这个方法,我们可以减少连接电路时所需耗费的面积。下图为 IC 电路的 3D 图,从图中可以看出它的结构就像房子的樑和柱,一层一层堆叠,这也就是为何会将 IC 制造比拟成盖房子。$ v, ?: O6 W* g" Q J( D+ I
+ d4 _0 a3 o/ [3 E
从上图中 IC 芯片的 3D 剖面图来看,底部深蓝色的部分就是上一篇介绍的晶圆,从这张图可以更明确的知道,晶圆基板在芯片中扮演的角色是何等重要。至于红色以及土黄色的部分,则是于 IC 制作时要完成的地方。
- e R& o; z; r( a$ D- ~
5 R2 a( p# p& ~$ I' V2 o& P2 O! T6 T首先,在这里可以将红色的部分比拟成高楼中的一楼大厅。一楼大厅,是一栋房子的门户,出入都由这裡,在掌握交通下通常会有较多的机能性。因此,和其他楼层相比,在兴建时会比较复杂,需要较多的步骤。在 IC 电路中,这个大厅就是逻辑闸层,它是整颗 IC 中最重要的部分,藉由将多种逻辑闸组合在一起,完成功能齐全的 IC 芯片。
% T# M5 {2 t1 |1 U/ J* C3 G5 W* x) a0 }3 P9 N
黄色的部分,则像是一般的楼层。和一楼相比,不会有太复杂的构造,而且每层楼在兴建时也不会有太多变化。这一层的目的,是将红色部分的逻辑闸相连在一起。之所以需要这么多层,是因为有太多线路要连结在一起,在单层无法容纳所有的线路下,就要多叠几层来达成这个目标了。在这之中,不同层的线路会上下相连以满足接线的需求。
( B/ W b8 y; G, k+ w( D
3 U/ ]7 o" E# M; T/ X! O( N, g, D分层施工,逐层架构
$ b1 r& p0 ~* z: A1 E
6 C, v( e* S" N1 `* c2 s, K5 Z知道 IC 的构造后,接下来要介绍该如何制作。试想一下,如果要以油漆喷罐做精细作图时,我们需先割出图形的遮盖板,盖在纸上。接着再将油漆均匀地喷在纸上,待油漆乾后,再将遮板拿开。不断的重复这个步骤后,便可完成整齐且复杂的图形。制造 IC 就是以类似的方式,藉由遮盖的方式一层一层的堆叠起来。" l) R5 R% y, D( C
( A* O6 }. v7 B+ a2 X
关于芯片的性能分析和介绍/ o2 p; I6 Z9 D' v+ T8 l) ~$ k
! W+ [$ {# _4 [, F+ a! j2 e
制作 IC 时,可以简单分成以上 4 种步骤。虽然实际制造时,制造的步骤会有差异,使用的材料也有所不同,但是大体上皆采用类似的原理。这个流程和油漆作画有些许不同,IC 制造是先涂料再加做遮盖,油漆作画则是先遮盖再作画。以下将介绍各流程。
' ^, R" @, G7 p% Y
8 @9 y% l7 x& T* }3 H金属溅镀:将欲使用的金属材料均匀洒在晶圆片上,形成一薄膜。
* l# i1 n4 k6 R* f
$ E+ Z8 ^2 O+ F$ `' d8 \2 V涂布光阻:先将光阻材料放在晶圆片上,透过光罩(光罩原理留待下次说明),将光束打在不要的部分上,破坏光阻材料结构。接着,再以化学药剂将被破坏的材料洗去。
. P! m& h. b* N! ? r4 {. ]4 G6 q( B5 M+ h2 e
蚀刻技术:将没有受光阻保护的硅晶圆,以离子束蚀刻。1 q8 F+ w+ W r* ^: _2 _
6 o" R' u& h+ H0 N$ C$ V2 q光阻去除:使用去光阻液皆剩下的光阻溶解掉,如此便完成一次流程。
! A- {8 h2 l3 j5 k8 E
. }# _. k, I5 t E最后便会在一整片晶圆上完成很多 IC 芯片,接下来只要将完成的方形 IC 芯片剪下,便可送到封装厂做封装,至于封装厂是什么东西?就要待之后再做说明啰。$ K$ j& D7 [, [ V
' t- O0 G& J+ D% r6 x& `
其中,主要晶圆代工厂有格罗方德、三星电子、Tower Jazz、Dongbu、美格纳、IBM、富士通、英特尔、海力士、台积电、联电、中芯国际、力晶、华虹、德茂、武汉新芯、华微、华立、力芯。- E P }8 Z) W
7 U6 c* q; X" o& Z1 b四、纳米制程是什么?
: A0 m; O W b+ D A z
9 W/ Q3 [( s. T% ^: Y三星以及台积电在先进半导体制程打得相当火热,彼此都想要在晶圆代工中抢得先机以争取订单,几乎成了 14 纳米与 16 纳米之争,然而 14 纳米与 16 纳米这两个数字的究竟意义为何,指的又是哪个部位?而在缩小制程后又将来带来什么好处与难题?以下我们将就纳米制程做简单的说明。0 G8 J, W) m- `5 D9 j( h+ U$ j' C
' Y- S; s- m2 I% N纳米到底有多细微?' H' @5 W5 |$ V0 G& a& p* w
9 }- u/ Z7 s7 j% x0 |. b在开始之前,要先了解纳米究竟是什么意思。在数学上,纳米是 0.000000001 公尺,但这是个相当差的例子,毕竟我们只看得到小数点后有很多个零,却没有实际的感觉。如果以指甲厚度做比较的话,或许会比较明显。; w1 H+ ~0 P; ]; F% \/ g
2 O* P6 W3 d$ G+ {2 d7 M3 M
用尺规实际测量的话可以得知指甲的厚度约为 0.0001 公尺(0.1 毫米),也就是说试着把一片指甲的侧面切成 10 万条线,每条线就约等同于 1 纳米,由此可略为想像得到 1 纳米是何等的微小了。
6 Q8 h% R$ {; |" }, ]
, I: {3 c9 p7 b. h8 J5 S t* ~$ Y7 l知道纳米有多小之后,还要理解缩小制程的用意,缩小电晶体的最主要目的,就是可以在更小的芯片中塞入更多的电晶体,让芯片不会因技术提升而变得更大;其次,可以增加处理器的运算效率;再者,减少体积也可以降低耗电量;最后,芯片体积缩小后,更容易塞入行动装置中,满足未来轻薄化的需求。
# v3 [! R, ^: L5 P: T: V$ ~2 q% d7 \# G7 C! @
再回来探究纳米制程是什么,以 14 纳米为例,其制程是指在芯片中,线最小可以做到 14 纳米的尺寸,下图为传统电晶体的长相,以此作为例子。缩小电晶体的最主要目的就是为了要减少耗电量,然而要缩小哪个部分才能达到这个目的?左下图中的 L 就是我们期望缩小的部分。藉由缩小闸极长度,电流可以用更短的路径从 Drain 端到 Source 端(有兴趣的话可以利用 Google 以 MOSFET 搜寻,会有更详细的解释)。
; q9 x4 K7 @- V9 B; M2 h+ }9 S+ K: y2 g2 M7 Z) |' ?9 y3 J
关于芯片的性能分析和介绍2 M" i* n5 d# Z
; u- Z3 z% y3 u/ ^& Q. S" f: N
此外,电脑是以 0 和 1 作运算,要如何以电晶体满足这个目的呢?做法就是判断电晶体是否有电流流通。当在 Gate 端(绿色的方块)做电压供给,电流就会从 Drain 端到 Source 端,如果没有供给电压,电流就不会流动,这样就可以表示 1 和 0。(至于为什么要用 0 和 1 作判断,有兴趣的话可以去查布林代数,我们是使用这个方法作成电脑的)
% F4 {* Y x3 K9 r' l4 _' d i+ c8 Q1 |" l% [
尺寸缩小有其物理限制
+ Z3 g4 |0 l, x* C: ^2 @ P9 s. C, @+ E6 n. p7 |9 F
不过,制程并不能无限制的缩小,当我们将电晶体缩小到 20 纳米左右时,就会遇到量子物理中的问题,让电晶体有漏电的现象,抵销缩小 L 时获得的效益。作为改善方式,就是导入 FinFET(Tri-Gate)这个概念,如右上图。在 Intel 以前所做的解释中,可以知道藉由导入这个技术,能减少因物理现象所导致的漏电现象。
g; B- U% Q7 {$ A8 a u9 ]
5 P, o% g% f9 q U4 R关于芯片的性能分析和介绍" Z* B/ v% T4 t, P- m, V
& Q" e2 _7 O% p+ S; L3 n2 u/ U
更重要的是,藉由这个方法可以增加 Gate 端和下层的接触面积。在传统的做法中(左上图),接触面只有一个平面,但是采用 FinFET(Tri-Gate)这个技术后,接触面将变成立体,可以轻易的增加接触面积,这样就可以在保持一样的接触面积下让 Source-Drain 端变得更小,对缩小尺寸有相当大的帮助。: u; x; r& t) `/ L# Q4 o
% C/ {( E o! V3 _5 j) A8 ^# o+ d
最后,则是为什么会有人说各大厂进入 10 纳米制程将面临相当严峻的挑战,主因是 1 颗原子的大小大约为 0.1 纳米,在 10 纳米的情况下,一条线只有不到 100 颗原子,在制作上相当困难,而且只要有一个原子的缺陷,像是在制作过程中有原子掉出或是有杂质,就会产生不知名的现象,影响产品的良率。
: |' x5 ]5 x; h! h" P4 z% s# s. r# m% e
如果无法想像这个难度,可以做个小实验。在桌上用 100 个小珠子排成一个 10×10 的正方形,并且剪裁一张纸盖在珠子上,接着用小刷子把旁边的的珠子刷掉,最后使他形成一个 10×5 的长方形。这样就可以知道各大厂所面临到的困境,以及达成这个目标究竟是多么艰巨。: D8 N/ M4 k, D/ E/ {/ g
1 m) A( G0 O5 |( [0 S3 M# z3 p
随着三星以及台积电在近期将完成 14 纳米、16 纳米 FinFET 的量产,两者都想争夺 Apple 下一代的 iPhone 芯片代工,我们将看到相当精彩的商业竞争,同时也将获得更加省电、轻薄的手机,要感谢摩尔定律所带来的好处呢。/ q" Z: A9 Y2 d
) R& l% S4 P. `+ q7 k; m9 k
五、告诉你什么是封装& p4 |5 z3 a! \
O& y: f( |, a. D* V
经过漫长的流程,从设计到制造,终于获得一颗 IC 芯片了。然而一颗芯片相当小且薄,如果不在外施加保护,会被轻易的刮伤损坏。此外,因为芯片的尺寸微小,如果不用一个较大尺寸的外壳,将不易以人工安置在电路板上。因此,本文接下来要针对封装加以描述介绍。3 W3 t* `$ H# `# e* T
$ k; X; u) \( \- Q0 E% G) i
目前常见的封装有两种,一种是电动玩具内常见的,黑色长得像蜈蚣的 DIP 封装,另一为购买盒装 CPU 时常见的 BGA 封装。至于其他的封装法,还有早期 CPU 使用的 PGA(Pin Grid Array;Pin Grid Array)或是 DIP 的改良版 QFP(塑料方形扁平封装)等。因为有太多种封装法,以下将对 DIP 以及 BGA 封装做介绍。
5 G/ U& W, @2 q( \
4 ?$ q6 T# ~6 k0 q6 {( _传统封装,历久不衰* e8 d! ^( v6 m. I% R
4 A9 c4 t* }6 N" n/ R首先要介绍的是双排直立式封装(Dual Inline Package;DIP),从下图可以看到采用此封装的 IC 芯片在双排接脚下,看起来会像条黑色蜈蚣,让人印象深刻,此封装法为最早采用的 IC 封装技术,具有成本低廉的优势,适合小型且不需接太多线的芯片。但是,因为大多采用的是塑料,散热效果较差,无法满足现行高速芯片的要求。因此,使用此封装的,大多是历久不衰的芯片,如下图中的 OP741,或是对运作速度没那么要求且芯片较小、接孔较少的 IC 芯片。( Q) n/ L0 D; J+ {) c: a
. A8 W& m8 A r$ _* k0 l3 O% t
至于球格阵列(Ball Grid Array,BGA)封装,和 DIP 相比封装体积较小,可轻易的放入体积较小的装置中。此外,因为接脚位在芯片下方,和 DIP 相比,可容纳更多的金属接脚
( Q, g. s) t+ \9 H" O
& O" t1 {$ b# V* N相当适合需要较多接点的芯片。然而,采用这种封装法成本较高且连接的方法较复杂,因此大多用在高单价的产品上。
, E" r6 Z, L5 I% T7 U/ {9 q9 m! Y: a+ b8 G) A' D! K
行动装置兴起,新技术跃上舞台+ v3 X1 _! x7 b1 H
! w3 m Z& q( u g* c然而,使用以上这些封装法,会耗费掉相当大的体积。像现在的行动装置、穿戴装置等,需要相当多种元件,如果各个元件都独立封装,组合起来将耗费非常大的空间,因此目前有两种方法,可满足缩小体积的要求,分别为 SoC(System On Chip)以及 SiP(System In Packet)。: P4 I6 K( m. K! s
4 T' o3 j: l( }' w6 ?
在智慧型手机刚兴起时,在各大财经杂志上皆可发现 SoC 这个名词,然而 SoC 究竟是什么东西?简单来说,就是将原本不同功能的 IC,整合在一颗芯片中。藉由这个方法,不单可以缩小体积,还可以缩小不同 IC 间的距离,提升芯片的计算速度。至于制作方法,便是在 IC 设计阶段时,将各个不同的 IC 放在一起,再透过先前介绍的设计流程,制作成一张光罩。0 D- L; C. a2 ~$ U8 C0 A6 r$ S+ j
% l$ W' {; E/ _
然而,SoC 并非只有优点,要设计一颗 SoC 需要相当多的技术配合。IC 芯片各自封装时,各有封装外部保护,且 IC 与 IC 间的距离较远,比较不会发生交互干扰的情形。但是,当将所有 IC 都包装在一起时,就是噩梦的开始。IC 设计厂要从原先的单纯设计 IC,变成了解并整合各个功能的 IC,增加工程师的工作量。此外,也会遇到很多的状况,像是通讯芯片的高频讯号可能会影响其他功能的 IC 等情形。
& v+ F' c% R/ U* _$ R! d Y1 M& G* l: H
此外,SoC 还需要获得其他厂商的 IP(intellectual property)授权,才能将别人设计好的元件放到 SoC 中。因为制作 SoC 需要获得整颗 IC 的设计细节,才能做成完整的光罩,这同时也增加了 SoC 的设计成本。或许会有人质疑何不自己设计一颗就好了呢?因为设计各种 IC 需要大量和该 IC 相关的知识,只有像 Apple 这样多金的企业,才有预算能从各知名企业挖角顶尖工程师,以设计一颗全新的 IC,透过合作授权还是比自行研发划算多了。/ Q+ A! s% U) l0 S+ e, S
* V6 Y% e4 c( W4 { O( p折衷方案,SiP 现身, Y' O5 y' \( |( a0 M: ^
( A1 R. h5 i- X$ s/ \3 `作为替代方案,SiP 跃上整合芯片的舞台。和 SoC 不同,它是购买各家的 IC,在最后一次封装这些 IC,如此便少了 IP 授权这一步,大幅减少设计成本。此外,因为它们是各自独立的 IC,彼此的干扰程度大幅下降。
8 r1 {+ ~. C3 k1 k- L1 D
1 D" G& G+ {# ]3 k0 s采用 SiP 技术的产品,最着名的非 Apple Watch 莫属。因为 Watch 的内部空间太小,它无法采用传统的技术,SoC 的设计成本又太高,SiP 成了首要之选。藉由 SiP 技术,不单可缩小体积,还可拉近各个 IC 间的距离,成为可行的折衷方案。下图便是 Apple Watch 芯片的结构图,可以看到相当多的 IC 包含在其中。
% ^! [" J3 R" O5 A& o. z+ p7 B/ Y9 \' W
关于芯片的性能分析和介绍
. `+ i5 M& G, I( z }6 r3 _ \4 ^4 R* E4 \3 Y
完成封装后,便要进入测试的阶段,在这个阶段便要确认封装完的 IC 是否有正常的运作,正确无误之后便可出货给组装厂,做成我们所见的电子产品。其中主要的半导体封装与测试企业有安靠、星科金朋、J-devices、Unisem、Nepes、日月光、力成、南茂、颀邦、京元电子、福懋、菱生精密、矽品、长电、优特。
5 y& H9 _8 F X& D' f+ E; G$ N5 B7 w0 q) p6 K' x. A% S6 Q; s
至此,半导体产业便完成了整个生产的任务。
2 g! F8 A9 S2 V" c |
|