找回密码
 注册
关于网站域名变更的通知
查看: 259|回复: 1
打印 上一主题 下一主题

ARM开发中最常见的C语言技巧

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2021-10-27 11:24 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
指针不光能指向变量、字符串、数组,还能够指向函数。在C语言中允许将函数的入口地址赋值给指针。这样就可以通过指针来访问函数。
还可以把函数指针当成参数来传递。函数指针可以简化代码,减少修改代码时的工作量。通过接下来的讲解大家会体会到这一点的。

1 V4 q* l: q/ E! o+ X5 s; x' {& V7 q* {1 L/ [% q
7 R: u' h+ Y% L  I
5 G; e! I; T7 n0 N8 T$ r

    - G) Y4 g5 I$ Q9 m  y9 ?+ p8 u
  • /*函数指针简单讲解
  • *通过指向函数的指
  • *针调用比较两个数
  • *大小的程序
  • */
  • #include
  • using namespace std;
  • /*比较函数声明*/
  • int max(int,int);
  • /*指向函数的指针声明(此刻指针未指向任何一个函数)*/
  • int (*test)(int,int);
  • int main(int argc,char* argv[])
  • {
  •   int largernumber;
  • /*将max函数的入口地址赋值给
  • *函数指针test
  • */
  •   test=max;
  • /*通过指针test调用函数max实
  • *现比较大小
  • */
  •   largernumber=(*test)(1,2);
  •   cout<endl;
  •   return 0;      
  • }
  • int max(int a,int b)
  • {
  •    return (a>b?a:b);  
  • }5 s  y, ~* S3 Z9 O
. f+ K) I2 w. J! ?, j+ z+ H
3 d; G( H! `% P

% {+ j2 a; N3 M# v" ~

9 a/ l/ F# e6 q2 D4 {& _2 K8 B( f2 W% c  X) E2 C
通过注释大家应该很容易理解,函数指针其实和变量指针、字符串指针差不多的。如果大家理解了这个小程序,那么理解起下面这个有关Nand flash的源代码就好多了。% l5 w# D1 t2 q, q7 P
$ ^% ?7 W# ?* M# ~' ^5 S$ F

/ A4 a( e: T0 |# \% s( M% b0 `6 q9 g+ Z
    3 s7 ?9 {, D) n$ N% C
  • typedef struct {
  •     void (*nand_reset)(void);
  •     void (*wait_idle)(void);
  •     void (*nand_select_chip)(void);
  •     void (*nand_deselect_chip)(void);
  •     void (*write_cmd)(int cmd);
  •     void (*write_addr)(unsigned int addr);
  •     unsigned char (*read_data)(void);
  • }t_nand_chip;
  • static t_nand_chip nand_chip;
  • /* NAND Flash操作的总入口, 它们将调用S3C2410或S3C2440的相应函数 */
  • static void nand_reset(void);
  • static void wait_idle(void);
  • static void nand_select_chip(void);
  • static void nand_deselect_chip(void);
  • static void write_cmd(int cmd);
  • static void write_addr(unsigned int addr);
  • static unsigned char read_data(void);
  • /* S3C2410的NAND Flash处理函数 */
  • static void s3c2410_nand_reset(void);
  • static void s3c2410_wait_idle(void);
  • static void s3c2410_nand_select_chip(void);
  • static void s3c2410_nand_deselect_chip(void);
  • static void s3c2410_write_cmd(int cmd);
  • static void s3c2410_write_addr(unsigned int addr);
  • static unsigned char s3c2410_read_data();
  • /* S3C2440的NAND Flash处理函数 */
  • static void s3c2440_nand_reset(void);
  • static void s3c2440_wait_idle(void);
  • static void s3c2440_nand_select_chip(void);
  • static void s3c2440_nand_deselect_chip(void);
  • static void s3c2440_write_cmd(int cmd);
  • static void s3c2440_write_addr(unsigned int addr);
  • static unsigned char s3c2440_read_data(void);
  • /* 初始化NAND Flash */
  • void nand_init(void)
  • {
  • #define TACLS   0
  • #define TWRPH0  3
  • #define TWRPH1  0
  •     /* 判断是S3C2410还是S3C2440 */
  •     if ((GSTATUS1 == 0x32410000) || (GSTATUS1 == 0x32410002))
  •     {
  •         nand_chip.nand_reset         = s3c2410_nand_reset;
  •         nand_chip.wait_idle          = s3c2410_wait_idle;
  •         nand_chip.nand_select_chip   = s3c2410_nand_select_chip;
  •         nand_chip.nand_deselect_chip = s3c2410_nand_deselect_chip;
  •         nand_chip.write_cmd          = s3c2410_write_cmd;
  •         nand_chip.write_addr         = s3c2410_write_addr;
  •         nand_chip.read_data          = s3c2410_read_data;
  •         /* 使能NAND Flash控制器, 初始化ECC, 禁止片选, 设置时序 */
  •         s3c2410nand->NFCONF = (1<<15)|(1<<12)|(1<<11)|(TACLS<<8)|(TWRPH0<<4)|(TWRPH1<<0);
  •     }
  •     else
  •     {
  •         nand_chip.nand_reset         = s3c2440_nand_reset;
  •         nand_chip.wait_idle          = s3c2440_wait_idle;
  •         nand_chip.nand_select_chip   = s3c2440_nand_select_chip;
  •         nand_chip.nand_deselect_chip = s3c2440_nand_deselect_chip;
  •         nand_chip.write_cmd          = s3c2440_write_cmd;
  • #ifdef LARGER_NAND_PAGE
  •         nand_chip.write_addr         = s3c2440_write_addr_lp;
  • #else
  •         nand_chip.write_addr         = s3c2440_write_addr;
  • #endif
  •         nand_chip.read_data          = s3c2440_read_data;
  •         /* 设置时序 */
  •         s3c2440nand->NFCONF = (TACLS<<12)|(TWRPH0<<8)|(TWRPH1<<4);
  •         /* 使能NAND Flash控制器, 初始化ECC, 禁止片选 */
  •         s3c2440nand->NFCONT = (1<<4)|(1<<1)|(1<<0);
  •     }
  •    
  •     /* 复位NAND Flash */
  •     nand_reset();
  • }
    + c- i3 ]  ]: z. h* s: Y; r; l

2 t- }) w" W# H& }9 C1 q
/ m7 O( O/ w6 d. |* \: c- l( n

0 m0 Z& A/ b# V$ o8 K! Y: s# b
# ~0 q; J% |* @1 S

6 b) y; w/ ]8 {, l! L2 t6 M这段代码是用于操作Nand Flash的一段源代码。首先我们看到开始定义了一个结构体,里面放置的全是函数指针。他们等待被赋值。然后是定义了一个这种结构体的变量nand_chip。1 M" z4 [5 }. y$ T5 b' V
7 P* s  H" W6 i" Q
6 \) h2 d/ J. X
然后是即将操作的函数声明。这些函数将会被其他文件的函数调用。因为在这些函数里一般都只有一条语句,就是调用结构体的函数指针。接着往下看,是针对两种架构的函数声明。然后在nand_init函数中对nand_chip进行赋值,这也就是我们刚刚讲过的,将函数的入口地址赋值给指针。
, v: h2 M( {0 F# S( p
5 }1 Z' `0 c5 B+ O
0 }9 _% p* `, J
现在nand_chip已经被赋值了。如果我们要对Nand进行读写操作,我们只需调用nand_chip.read_data()或者nand_chip.write_cmd()等等函数。这是比较方便的一点,另一点,此代码具有很强的移植性,如果我们又用到了一种芯片,我们就不需要改变整篇代码,只需在nand_init函数中增加对新的芯片的判断,然后给nand_chip赋值即可。所以我说函数指针会使代码具有可移植性,易修改性。
6 U% p( J+ J9 V7 F- n- X; R& o0 k
& q8 y: n) W- N$ a5 k+ r  _  W5 `
- w! M8 L9 i) d; m; n( G: S- d

; s  g* f! z/ ^% C$ a0 \. C( b
6 y, Z! W* d9 l7 J
2.C语言操作寄存器. U% I3 ^7 Y" \; y) y8 ?  R3 K
嵌入式开发中,常常要操作寄存器,对寄存器进行写入,读出等等操作。每个寄存器都有自己固有的地址,通过C语言访问这些地址就变得尤为重要。! o+ @! F; K3 F9 w7 m7 k* f4 r
9 F) E& g( u: n- u

7 N5 o6 m8 @! s* ]9 T#define GSTATUS1        (*(volatile unsigned int *)0x560000B0)
# p9 ?, G7 B2 G在这里,我们举一个例子。这是一个状态寄存器的宏定义。首先,通过unsigned int我们能够知道,该寄存器是32位的。因为要避免程序执行过程中直接从cache中读取数据,所以用volatile进行修饰。
0 E$ ]- a4 w( L3 `$ N( \5 F5 c& G$ o6 G! k. \1 n
5 V$ T6 ?. z) @1 ~0 V# Z
每次都要重新读取该地址上的值。首先(volatile unsigned int*)是一个指针,我们就假设它为p吧。它存储的地址就是后面的0x560000B0,然后取这个地址的值,也就是p,所以源代码变成了((volatile unsigned int *)0x560000B0),接下来我们就能直接赋值给GSTATUS1来改变地址0x560000B0上存储的值了。8 T+ d; K& c. t7 m( s& p' v
. j8 A' n' S7 Q
1 P, R3 Z. U+ w" G

+ }0 o! _7 G3 r: F: ?. u+ \+ t8 Y
; @8 A) z' P4 v$ M/ g! f6 q- y4 W. x" Q

    2 J# E7 N2 j* w* W+ p
  • /* NAND FLASH (see S3C2410 manual chapter 6) */
  • typedef struct {
  •     S3C24X0_REG32   NFCONF;
  •     S3C24X0_REG32   NFCMD;
  •     S3C24X0_REG32   NFADDR;
  •     S3C24X0_REG32   NFDATA;
  •     S3C24X0_REG32   NFSTAT;
  •     S3C24X0_REG32   NFECC;
  • } S3C2410_NAND;
  • static S3C2410_NAND * s3c2410nand = (S3C2410_NAND *)0x4e000000;
  • volatile unsigned char *p = (volatile unsigned char *)&s3c2410nand->NFSTAT;
    . a7 q) i8 R+ J3 W6 a, Z. _
! R' V# G5 z! D: t

! ?, x( N' r8 Y
$ o/ {3 m: G7 m: p! E  `
) C/ \/ q. \0 e+ V, n# M; l; i0 u- y

+ k) A& i5 p! H4 z. r2 x$ N有时候,你会看到这样一种情况的赋值。其实这和我们刚刚讲过的差不多。只不过这里是在定义了指针的同时对指针进行赋值。这里首先定义了结构体S3C2410_NAND,里面全部是32位的变量。! a3 H+ |- ?1 b
5 d8 {$ B2 `- ]! O

( p) Z" H2 M1 y2 Z6 K又定义了这种结构体类型的指针,且指向0x4e000000这个地址,也就是此刻s3c2410nand指向了一个实际存在的物理地址。s3c2410nand指针访问了NFSTAT变量,但我们要的是它的地址,而不是它地址上的值。所以用&取NFSTAT地址,这样再强制转换为unsigned char型的指针,赋给p,就可以直接通过p来给NFSTAT赋值了。
* A- Z  @  Z! `! H
0 N* T  B* _, t7 `& o# d6 P

, M& a/ g% J3 [+ X& x3.寄存器位操作
  R- |( }0 a$ w  k8 W* R' ]' b6 e8 A8 H
; e; J% p1 P( @2 Z9 l
! v% c* C) d! I3 P, {

      B! z+ H. M! W' u$ I- G4 W
  • #define GPFCON      (*(volatile unsigned long *)0x56000050)
  • GPFCON &=~ (0x1<<3);
  • GPFCON |= (0x1<<3);$ k  ~% q8 Y2 z- ]

1 x/ W0 t* b6 D/ R4 z
: C+ Q' i3 V6 b

/ y8 G/ C( x/ _* f# s

+ n+ ^# f5 [+ u1 y5 f, [, j- q  I' u5 f" b5 L- U9 L& ^( E1 {
结合我们刚刚所讲的,首先宏定义寄存器,这样我们能够直接给它赋值。位操作中,我们要学会程序第2行中的,给目标位清0,这里是给bit3清0。第3行则是给bit3置1。
3 l3 ?2 G" B( R# v( |

该用户从未签到

2#
发表于 2021-10-27 13:49 | 只看该作者
在C语言中允许将函数的入口地址赋值给指针
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-10-13 00:06 , Processed in 0.140625 second(s), 23 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表