|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
摘 要:该文按照多尺度重采样思想,构造了一种类指数分布的核函数(ELK),并在核回归分析和支持向量机分类
3 m. P, n) r: `2 T9 b& r$ }) Z中进行了应用,发现 ELK 对局部特征具有捕捉优势。ELK 分布仅由分析尺度决定,是单参数核函数。利用 ELK
* a) Z: B1 G- n, [对阶跃信号和多普勒信号进行 Nadaraya-Watson 回归分析,结果显示 ELK 降噪和阶跃捕捉效果均优于常规 Gauss
9 l6 I2 d( X" [" k核,整体效果接近或优于局部加权回归散点平滑法(LOWESS)。多个 UCI 数据集的 SVM 分析显示,ELK 与径向( e1 j' L( l2 {$ p! Z. M% R
基函数(RBF)分类效果相当,但比 RBF 具有更强的局域性,因此具有更细致的分类超平面,同时分类不理想时可1 K" W- K, i0 k
能产生更多的支持向量。对比而言,ELK 对调节参数敏感性低,这一性质有助于减少参数优选的计算量。单参数. P) O# t4 j* e* J; H& z/ ?& V
的 ELK 对局域特征的良好捕捉能力,有助于这类核函数在相关领域得到推广。
8 {' E5 n/ f, d关键词:多尺度重采样;Nadaraya-Watson 回归;支持向量机;类指数核函数# U5 d- w* p: ?( M
0 I/ n: Y z a4 u; X
3 a5 k7 e( M$ Q: y* w
$ G. c! e8 Q q
; J7 K2 f$ f8 p0 w' G附件下载:
' F9 c; j0 x# a6 x; Y( M
1 a5 n7 r# W* i- G% a8 M; _. m |
|