找回密码
 注册
关于网站域名变更的通知
查看: 398|回复: 1
打印 上一主题 下一主题

[毕业设计] 自动发音错误检测中基于最大化 F1值准则的 区分性特征补偿训练算法

[复制链接]
  • TA的每日心情
    慵懒
    2020-8-28 15:16
  • 签到天数: 3 天

    [LV.2]偶尔看看I

    跳转到指定楼层
    1#
    发表于 2021-4-7 09:49 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

    EDA365欢迎您登录!

    您需要 登录 才可以下载或查看,没有帐号?注册

    x
    ! x( [1 T$ u/ @4 v+ j
    摘 要: 为提高自动发音错误检测性能,提出一种区分性特征补偿训练算法.该方法将高斯后验概率矢量经过 线性变换后作为偏移量补偿至传统的谱特征.将经过正确度标注的语音数据库上的发音错误检测 F1值的最大化作 为变换参数的训练准则.推导了目标函数对变换参数的偏导数公式,并利用无约束参数优化例程 LBFGS更新变换参 数.发音错误检测实验表明该方法能够有效增大训练和测试集的 F1值.并且训练和测试集的精确度、召回率也都有 明显提高.在特征优化的基础上进行模型参数训练,检错性能较单独的区分性特征训练、单独的区分性模型训练都有 进一步改进. 8 M/ `. C9 Y1 `9 t1 N/ [+ j. x

    - q& U4 x6 I6 J. J9 X* A

    ( p" ~2 v9 P1 [* R) ]+ l$ |) ]7 ^1 a关键词: 自动发音错误检测;F1值;区分性训练;特征;计算机辅助语言学习
    # S) ], R- k0 u! t1 c
    8 k2 z$ [3 h7 x
    0 r( Z8 M  f, F
          计算机辅助语言学习是利用语音语言技术辅助学 生学习语言的技术,自动发音错误检测是其中一个重要 形式,其目的在于自动指出说话人的发音错误.近年来, 各机构都展开了研究,产生了一系列方法[1~9].发音错 误检测总体上基于语音识别技术,在声学模型的建立方 面,尽管研究人员对不同的模型进行了尝试[1,7,8,9],高 斯混 合 模 型隐 马 尔 可 夫 模 型 (HiddenMarkovModel, HMM)仍是常用建模方法,而 GOP(GoodnessofPronuncia tion)[2]则是描述发音定量得分的经典算法.
    - \3 k. K' M2 ]: q
    , e6 W/ s+ F( R: z; G6 f
    * m/ C5 D$ i) w# j8 A$ C
    附件下载:
    游客,如果您要查看本帖隐藏内容请回复
    : j/ |, n: f  R3 t6 I! w' m% I
    ' {3 J3 L/ }9 Q  c- E! w0 T

    该用户从未签到

    2#
    发表于 2021-4-7 10:41 | 只看该作者
    精度提高了不少啊
    您需要登录后才可以回帖 登录 | 注册

    本版积分规则

    关闭

    推荐内容上一条 /1 下一条

    EDA365公众号

    关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

    GMT+8, 2025-10-4 19:49 , Processed in 0.140625 second(s), 26 queries , Gzip On.

    深圳市墨知创新科技有限公司

    地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

    快速回复 返回顶部 返回列表