TA的每日心情 | 慵懒 2020-8-28 15:16 |
---|
签到天数: 3 天 [LV.2]偶尔看看I
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
限制功率密度的因素:开关损耗
; ` N! n( e/ ~9 r9 H i0 N. o# [' B$ h8 C7 q5 o
尽管增加开关频率可以提高功率密度,但在目前,电源转换器的开关频率通常不高于兆赫兹范围,这是因为:开关频率的增加会带来不良副作用,也会导致开关损耗增加和相关的温升。这主要是由一些主要的开关损耗引起的。要了解这些开关损耗,我们有必要首先介绍一些行业术语。在半导体器件中,与该器件相关的电荷量通常与导通状态电阻有关。较低的电阻会导致较高的栅极电荷和寄生电容。电阻和电荷的这种权衡通常通过 RQ FoM 进行量化,RQ FoM 定义为器件的导通电阻乘以总电荷,其中总电荷是指必须提供给端子以在工作电压下开关器件所需的电荷。此外,器件为达到目标电阻所占用的面积通常称为电阻与面积的乘积(Rsp)。您可以通过减少金属氧化物半导体场效应晶体管 (MOSFET) 的导通状态电阻 (RDS(on)) 来降低传导损耗。然而,减少 RDS(on) 也将导致与器件开关相关的损耗增加,并增加裸片总面积和成本。根据实现和应用的不同,不同的开关损耗对总体功率损耗的影响可能会有所不同。有关每种类型损耗的更多详细信息,请参见应用 “同步降压转换器的功率损耗计算和共源电感注意事项”。出于阐述本文观点的目的,我们来看一个降压转换器示例,并重点介绍与每个损耗分量相关的关键限制因素。
! i, r/ U7 U: }* P" }, v! H) a% S7 Y0 a% g. z
关键限制因素 2:反向恢复损耗4 Y3 j. g3 ?$ z x: Y& R7 `7 I7 B
! x+ z2 E, w; K; S
在降压转换器中,当高侧 MOSFET 导通,同时低侧MOSFET 的体二极管导通电流时,会发生反向恢复,从而迫使低侧二极管电流迅速过渡至高侧 MOSFET。在该过渡过程中,需要电流来消除会造成直接开关损耗的低侧二极管少数电荷。
/ ^! {7 \, R" G+ |6 G
$ B( ` k( h5 i0 I 降低二极管反向恢复影响的 方法之一是通过优化 MOSFET 设计来减少存储的 电荷 (QRR),或者减少或消除上升沿死区时间,从而完全消除损耗的影响。) L% x0 U9 ]* f, d
! \% N! k' \2 x$ ] 关键限制因素 3:导通和关断损耗
3 z3 C. j3 g% S- r$ E4 |+ w( s7 E# ]( J/ L l2 F) b: h: f
寄生环路电感会导致许多与开关相关的损耗,这会大大降低效率。让我们再次以通过高侧 MOSFET 传导电感电流的降压转换器为例。关闭高侧开关会中断通过寄生电感的电流。瞬态电流 (di/dt) 以及寄生环路电感会引起电压尖峰。di/dt 值越高,开关损耗越低,从而导致器件电压应力越高。在某些关断速度下,降压转换器高侧开关会发生击穿。因此,您必须审慎地控制开关速度, 限度地提高效率,同时将直流/直流转换器放置在安全工作区域内。此外,降低高侧 MOSFET 的漏极电荷也会导致其上出现额外的电压尖峰,这是因为作为电感/电容网络的一部分,用于吸收寄生环路电感中所存储能量的电容较小。这带来了另一个挑战,因此 是将漏极电荷保持在尽可能低的水平,以减少前面提到的与电荷相关的损耗。要减轻与这些寄生效应相关的总损耗,通常需要减少环路电感本身,同时采用其他栅极驱动器技术。
: v1 @1 u; o, f& H1 N' X+ b* W" h- @5 |0 ^6 h5 }" t
|
|