| 
事情是这样的,我最近在研究团队编组及内部模式对发挥团队能力的影响,以及如何正确编组让团队能力发挥实现最大化,别问我为什么研究这个,反正稀里糊涂就研究上了。我发现在描述团队编组间及内部同步能力的时候,人们对Kuramoto模型(藏本模型)作了大量的研究,其中包括模型达到完全相位同步的充分条件、耦合强度对于同步的影响、一定条件下振子的收敛速率等。但具体实现一般都在MATLAB中,且网上代码过于复杂(我运行了一遍一堆报错),这里我使用Python和MATLAB对Kuramoto模型简单模拟。
x
EDA365欢迎您登录!您需要 登录 才可以下载或查看,没有帐号?注册  " y7 @7 ^& _/ Y8 b4 w1 m模拟的话还是一遍举个栗子,边分析边测试效果最好,百度学术上有一篇关于Kuramoto模型的简单论文,我们就用它来实现模拟。4 N) A0 b  H8 m
 ) w. A3 p6 w; q/ Q6 F5 q
 好吧,那我们开始,首先是Python实现:0 p) g/ k4 d/ I+ P" A1 K! ]" N
 
 : C+ d2 l. I8 G9 R3 m, o3 Z% W$ [3 g) W( IN维Kuramoto模型的数学描述如下:
 : F) ^* N: }, N* h: h# Z; I
   ; r7 Y. h+ m$ T- h* S  v. |
 6 g4 l# K8 t- U! s3 y; w( }没错,是讨厌的数学公式,没事,它可以改写成这样:( v$ n  _2 D9 W- R, w/ G6 ~  r6 d
 
  4 o; c. O6 E- n% H 
 ; j& S- g% p/ S好像还是有点长,那我们在改写一下:
 8 w) M( s' E2 p5 G: i( D% L' C" {
   4 Z5 a. D2 ~- ?( N) s
 4 H! B* y( s9 g; p8 A" B看着好多了,那我就来说说式子中参数的意义,Kij为耦合矩阵,是为了便于描述不同振子间耦合程度不同的情形。最下面那个式子的r就是我们的目标,反应振子间的相关性,这个相关性就可以描述我们想要的编组内部同步能力。
 8 X/ r- D0 L' k5 L4 M% n. A5 s$ o2 V! |/ u
 哎呦,这个式子看起来好简单,这里要补充一下知识点:同步能力可不是一下子各组该怎么同步直接确定的了,它是一个从开始到稳定的阶段,也就是说随时间变化,最终反映在各组的同步能力才会确定,那么最后图像是什么样子才算同步能力好呢?5 n0 {$ x# q9 d0 `8 w8 N
 
 . l& M4 D3 I4 [( Y; }同步能力好,是指随着时间的推移,各组的同步能力r逐渐稳定,波动现象消失或固定在某一个小范围内。需要注意的是这和各组r值之间的差距没有关系,我们要的是一个平稳的状态。那怎么办找r和t的关系呢?  A  E8 {1 h0 X& A1 Q  k- X- Q9 m
 
 8 g0 k% q7 h- t3 N! K# Q注意看最上面那两个式子,相位(第一项,等号左边那个)上面有个点,这样他可就不简简单单是个相位了,它代表的是相位的变化值,是一个微小的微分值,好吧具体意思就是,那个式子左边展开之后是这样的:
 f6 D/ W& @1 p9 H: j$ H( B
  3 m, a7 ^. R* x* n9 v 
 $ o" u; I$ p6 y' ^' \( ^哎呀,t出现了,其实\theta 与t有关,这里你可能有点绕,因为它们之间的关系是一一对应的,就是说每个时间的t对应了一个\theta ,我下面带入具体数值的时候你就知道了。& `: X2 x' C% o6 ~+ @
 
 , K0 F7 U: B  `% e. p" c4 n组间同步能力与时间t的关系出现了!
 3 j4 B* {# i/ A2 |: f( F, n7 a; h- j0 ~5 }. t3 e7 R
 也就是说我先用上面的那个公式4计算出来\theta 的值,在带入到公式5,那么t-r关系就可以明确下来了,那现在我们再回过头来看看文章中已经给的例子,看看还有没有未知量。
 * r' q2 C: y0 q7 k, p' X- e( X( ]; s7 I$ D: B3 i% F& j
 栗子是这样的栗子:
 % L: v7 G* g/ X2 n6 l, Q$ [! |) {6 B4 o$ r
 假设某机构内部有 4 个编组,每个编组包括 5 个节点(其中 1 个节点为领导节点) 。另外,将上级领导作为一个独立的编组,且只包含一个节点。假设在领导机关增加4名信息传递人员。当以独立编组模式编组时,指定1名信息传递人员为指挥者,其指挥关系与其他编组一致; 当分散编组时,信息传递力量节点的关系与所在编组其他节点指挥关系一 致。其中,完全分散编组模式时,各信息传递力量节点之间无信息共享通道; 不完全分散编组时,在各信息传递人员节点之间建立一条信息共享通道。各编组模式及其拓扑结构如下图所示:
 ; a% b: |( i4 _' D# h
 % m  i4 I% n0 u, ~$ w独立编组模式0 o7 {8 l& L% w" B# u8 k; a
 
  % n/ l3 d# F& k# @8 T 
 + x2 t4 d, s# m9 o3 w8 X3 E9 L完全分散编组
 7 o8 _# h7 R3 P+ L8 y( q; J
   + N! a; K' _! p, A& ~4 T
 . d) m, b; n5 ?; [, j1 A) Z1 v) ?* h
 不完全分散编组
 ; J. X  v9 @/ J6 X
   : G1 H& X! @$ a$ L9 G9 t- I, T* D3 J7 T
 7 j4 U3 G$ r; I+ ?% H
 参数数据
 4 x9 n1 S6 E% R$ [2 B$ v7 [  f" Q& D; R3 [6 K
 
   ; @% S& v* m( j5 Z: t9 f* I; F7 G+ J! i/ P& `, e6 j
 9 ?% S! w: I6 N2 v% T  N3 `
 参数确定一下有没有未知量:
 2 S# b& G9 M0 g0 h& d) Y1 m2 W9 g) b" Z8 S( F4 U9 c
 首先N,数据数目已知,这个有了。6 i6 ?8 }6 d& p( G, y$ U% u! Q3 D
 
 0 y1 w* X( T; H/ j! z# e7 y) uK值是分组内的连接强度,这个是看实际情况,由甲方提供或者自己看着给的,这里就是甲方给的编组图,i与j点的链接强度一目了然,这个有了。) o  |# H$ m" ~' j, f# R- M& ~
 ' l+ O9 j. B6 r* s
 \omega _{i} 是振子i的固有频率,也称自然频率,甲方会给,没法自己估计,这个有了。
 ( ~1 S/ s8 Y. N3 k( f2 e$ @: h3 I& k2 o% Q3 c
 \theta ,\theta 怎么办,初始的\theta 会给,自己也能测的出来,但那么多\theta {j} -\theta{i} 得多少不知道啊,这里通过翻看文章,我发现其实文章是有一个特殊条件的,不然的话是需要研究耦合因子求三种约束条件解情况的,特殊条件就在这:
 / x8 M( d* n2 C; r
 $ Q7 X8 }( s& Z/ Y. h假设编组内节点的初始相位差为π/2,且编号最小者为0,随编号增大而增大。
 # y& J7 Q$ @! [7 z4 I& r+ w
 : T8 A1 O* R+ p) R% J! O0 ?4 P哦,初始相位差知道了,你还告诉了我各个初始相位,那么\theta _{j} -\theta _{i} 的值就在一个范围内的几个固定值里面啊!
 + w+ }( Z  a  Y' M( U/ T1 h2 Q* h- _2 f2 e1 ~
 好的,没有未知量了,就是找K的时候麻烦点,没办法,这个决定了编组的不同,写脚本算一下吧:
 ( E7 B$ _( [& `, ^- y3 m) C4 X, u; X! U( i) D
 #codingutf-8
 8 v& N/ g# C: ~! }
 5 Z2 @6 ?/ ~- Z##ScriptName:KuramotoSimulation.py 8 @/ Y: X( ?% G9 y# f, H. c) g
 
 ( |2 d& `. E) h# M& N7 wimport matplotlib.pyplot as plt
 4 c) u0 X3 u/ Y7 n
 ) M9 G1 O0 `5 R5 u# s9 q- p! o0 zfrom pylab import " \2 n9 a. p; ?
 
 $ h% s' O  u% i8 u, l! ]4 t9 A& `from sympy import   @5 U  C6 W0 y# l
 - P! i4 |* C8 L7 l1 f# f# U
 from matplotlib.ticker import MultipleLocator, FormatStRFormatter # ^  O0 \) N/ N" M
 7 w2 g, @% _6 ?: B" g# ]# j
 import math
 & O' }( Y3 k  N) c7 J8 S) Z7 D) B4 i& C4 e, [
 import numpy as np , a% n, i8 y+ w& u0 _* c  m
 2 v- q" {2 l7 f/ M
 N = 31      #总节点数
 9 M$ x* z/ o8 S: o1 m( M/ W8 J. K! D4 F
 c=[0,0,math.pi  2,math.pi,3  math.pi 2,0,0,0,math.pi  2,math.pi,3  math.pi 2,0,0,0,math.pi  2,math.pi,3  math.pi 2,0,0,0,math.pi  2,math.pi,3  math.pi 2,0,0,0,math.pi  2,math.pi,3  math.pi 2,0,0]
 - Z7 g0 q! }' \0 z4 ^: z+ z2 W5 l; r7 O) l% N0 q2 e6 J8 f
 w = [4,3,3,2,2,1,4,3,3,2,2,1,4,3,3,2,2,1,4,3,3,2,2,1,4,3,3,2,2,1,5]
 0 D& @0 B' w( K3 \2 ~% A$ V6 }) J: _- S5 }
 k1 = [
 ! ?! F+ ?3 f) Z( G4 C
 . P' C* O; C# E* _& n[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
 3 O6 |* v# I+ |8 J+ @6 ~' E1 v5 j$ I8 u! D" @5 R
 [1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2],
 1 g; S" B+ o5 J& a! v& G: O" i* j
 * z  [4 `0 \) k* G# R, K[1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], 3 Z& w6 @3 G! z& T; ^5 C$ }
 
 8 b0 J8 F7 [8 t4 H+ m[1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
 0 b7 L5 n: {/ g7 R$ ?" J
 # x+ ~$ e0 @; y0 s9 k[1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
 # z7 t' u+ ?3 U: A2 p# k& r3 t3 b" Y- N. I1 h- i: Z
 [1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], $ a$ W* j& |9 l; @
 ) H4 p! q& P3 C1 s0 T2 w; x6 K: j
 [1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], 5 ?$ p' m5 @' G  G  z$ N# N4 G
 
 " N1 e. _* q1 O4 X+ }[0,0,0,0,0,0,1,0.9,0.9,0.9,0.9,0.9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], " k" d$ q: C9 F9 M# K- D
 / m) w* }, I$ J. |5 _1 o( D. @
 [0,0,0,0,0,0,0.9,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], 7 c! u6 K. I, v& o
 
 4 a2 ?7 P+ b7 }5 h8 w; Y[0,0,0,0,0,0,0.9,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], + G) Z+ n1 D& o% {( W
 
 5 i( v5 a1 n9 _, @, p: V[0,0,0,0,0,0,0.9,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
 4 W, _0 M3 l2 q( Y/ E2 ?; A$ ?& o
 [0,0,0,0,0,0,0.9,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],   y6 d& o# S# B7 `$ x  _& Z  e
 " r, u! W, G6 N4 U* X. S
 [0,0,0,0,0,0,0.9,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], * J* X  N, H( w. k' \
 0 E4 {, [. I8 A' K/ H
 [0,0,0,0,0,0,0,0,0,0,0,0,1,0.8,0.8,0.8,0.8,0.8,0,0,0,0,0,0,0,0,0,0,0,0,2], # z+ D1 C( h0 M# e
 
 1 u$ p; y4 e! L[0,0,0,0,0,0,0,0,0,0,0,0,0.8,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], 0 J( o' Q! R; p6 {; x# o
 
 7 X2 J6 F8 C& c& t& E% g[0,0,0,0,0,0,0,0,0,0,0,0,0.8,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
 # g7 t- e6 i3 ^# N4 q4 j& e8 i0 O( G1 x7 \- a
 [0,0,0,0,0,0,0,0,0,0,0,0,0.8,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
 , g; ]) a( E  v. {3 \6 h, E, u# j7 n3 s6 ^
 [0,0,0,0,0,0,0,0,0,0,0,0,0.8,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
 : C. o4 i, Q6 M: T
 4 C! t+ m2 G: Z3 ^6 d[0,0,0,0,0,0,0,0,0,0,0,0,0.8,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0],
 - p4 n3 I: @2 T$ ?) {  ^4 b& a  U& B9 U0 s# i
 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0.7,0.7,0.7,0.7,0.7,0,0,0,0,0,0,2],
 & M( ^5 w/ c& G3 W- y; m& l! ?* g9 G- |* ^
 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7,1,0,0,0,0,0,0,0,0,0,0,0], ( I( f) h3 }$ E8 G# _. J
 
 * Q4 p/ P$ X( f' k7 y[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7,0,1,0,0,0,0,0,0,0,0,0,0],
 / T  m8 b; Z* [+ f
 8 K* [+ V( e: G+ P7 b8 w[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7,0,0,1,0,0,0,0,0,0,0,0,0], 0 i/ S' w2 d5 C9 E
 
 1 @* f& [- S& T. d, p2 @[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7,0,0,0,1,0,0,0,0,0,0,0,0],
 ' s  o* X5 b$ v- ^% Z
 5 b8 v+ I7 e0 z[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7,0,0,0,0,1,0,0,0,0,0,0,0],
 $ R- y/ M! T3 {# S2 x' d0 D2 ^1 R0 @7 K4 J, |
 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0.6,0.6,0.6,0.6,0.6,2],
 ! {9 K; m1 v! z" {! Y% s) t4 X
 5 n" W1 P' n  c* u1 p! M7 c9 i[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6,1,0,0,0,0,0], $ L& ~+ _" a' m3 J
 0 y" c" d8 Y7 y& ]
 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6,0,1,0,0,0,0],
 5 k7 m) g3 e% l% k0 u8 S# E6 @. c) W* W* e2 z0 v& u% s, A# x; n
 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6,0,0,1,0,0,0], 6 `5 Q( H& z* p9 }
 
 6 P3 g/ h) n# d0 U2 u# q! |# M- N[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6,0,0,0,1,0,0], 1 V& U& I1 g) g& {3 F- F
 # X9 S, Z- S3 I  _4 t* J/ D. S: O) B
 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6,0,0,0,0,1,0], ( _9 W5 b0 I* g- L, J( Y
 
 ! L% T3 }9 N! z, s  Z( u[2,0,0,0,0,0,2,0,0,0,0,0,2,0,0,0,0,0,2,0,0,0,0,0,2,0,0,0,0,0,1]]
 9 ^" R6 v8 c' H6 h& c5 {, m- r9 ?
 ) G3 R  E' V- an = [i + 1 for i in range(22)]                #目标划分,24个值,1-24 3 {: L8 J# W. q; U
 . Z1 v1 }6 `' |9 K3 S
 t = [j  for j in range(1000)]
 6 s+ Z+ g# j' ~- d% a7 f5 a3 F" T1 I" ]1 _/ q5 \$ D
 ci = 0
 : A6 Z4 A2 c# u- Y8 S$ L+ E' Y/ K$ U% o* ^6 t
 C = [] 3 F1 l1 F& N: d4 q" F& G
 ( h% q  F+ p% y2 m/ K$ X/ E% w7 c
 C.append(c)
 8 i+ x( p8 R3 U) t! d
 , C! @' E* |" Sfor d in range(1100)
 " y1 U7 E6 U( v0 K/ L- i
 0 F. @3 M2 k; l    for i in n
 # h; h( F* u. f+ F8 d( e  G: L; {: Y6 S# a6 {8 [/ C
 for j in range(22)
 C6 C: E4 c, f& I8 q
 6 E& d3 y% f# g8 @+ F6 D            cj = c[j + 1] - c
 2 B6 k  l6 T( k: Z( K0 a* O0 N1 F  }. Z
 ci += k1[j + 1]  math.sin(cj)
 2 E: U( u  j. U$ B
 7 J; \8 C0 x. B  _" X- H8 }        cii = ci + w # K. I; W5 u5 t& i: }+ E/ D
 
 7 i1 c" E% ]& r) s        h = [0.01  cii + z for z in c] 9 p* @9 p' D* e/ I% |5 ~
 
 7 i& B9 f1 b9 a" W9 U5 g        C.append(h) ! Y/ g% N5 q  _; _9 S9 l' S
 ' I* p- ?. x5 z$ a8 k3 J
 c = h 3 a2 L; J% {* ^0 Z" @) J
 
 8 H4 k" u9 \  L5 J  _8 {def r_function(u)
 ! Y# Z- b: Q7 ^- U( E$ q. k3 L) p- E+ G7 u
 y1 = 0
 / v9 I& ]0 M& q2 }& V
 v+ s2 A& a- {* i/ I    y2 = 0
 / T- `, K2 ]! b7 v3 S5 D+ @; Z6 ~$ t9 T- _: `- `! @
 y12 = 0
 & I8 L4 V' {0 h; ~, G$ o/ i0 @
 0 |+ p: I" V8 u& m1 q3 q% p  e    y22 = 0
 m$ W8 }3 X# q) {* [) A8 i8 ~) K0 i: \
 r = []
 : n" q6 Y" N) D5 f) b4 `0 l. t9 A( n1 a) O  j7 n7 q
 for x in range(1000)
 ' c( b- H% m, d7 G7 I  [2 h( _% C& d8 l7 ^+ p3 D9 ^
 for ul in u
 4 P6 s! |1 x) ~) c
 0 g- f) L$ C. u            y1 += math.cos(C[x][ul])
 4 v+ ^5 U! V  [- A
 3 ]6 `$ V" [' L: W3 w            y2 += math.sin(C[x][ul])
 8 H/ c$ x6 M$ r  H  M- _- \# M
 ' L" `" ^: h1 @6 N) u        y12 = y1  2
 7 e2 W- T3 I. v7 M
 6 T. R0 ], a2 x' E        y22 = y2  2
 $ D1 n0 U, U6 K6 G$ G1 [& A) ]$ x
 r.append((float(1)  N )  ((y12 + y22)  0.5)) + c' n) E( r1 q1 L) r
 
 " M" ~2 f0 W% b, X  o7 E    return r
 + ?. A$ ?) j# ]$ r! n3 W" z% [1 g# q6 K1 n$ p
 r1 = r_function([1,2,3,4,5,6]) / Q4 y4 u4 q, f1 t  \) {' E
 5 ^% X% c3 H1 ^  e& F$ a
 r2 = r_function([7,8,9,10,11,12])
 ) H$ C9 i' {- o0 d2 S. k3 ]9 P) l/ P' y- }- Q* K  N- B4 }
 r3 = r_function([13,14,15,16,17,18]) ' d/ H2 u  T6 e$ O5 u
 3 F& \$ T) l1 g3 }3 ~" C
 r4 = r_function([19,20,21,22,23,24]) 9 a& ~( B# V; m3 H) X  T
 1 C1 B! x, G( t+ i/ ]  {! Z2 {
 r5 = r_function([25,26,27,28,29,30]) 3 Y  G! b* n, C+ P7 K( l
 : l5 h5 M+ c8 Y2 M4 y( ]9 U
 #r6 = r_function([31])
 ; E' k, K1 M) ~  Y& {) K1 O! w* u; G& @6 g3 Q2 }5 X
 
 # {+ h; a' {' k$ V$ I& Y9 l0 e  C% }* c6 `2 o* c
 ax = subplot(111) #注意一般都在ax中设置,不再plot中设置 , P. O/ e/ t9 Z
 
 9 e! S. r1 @4 j( y7 EymajorLocator  = MultipleLocator(0.1) #将y轴主刻度标签设置为0.5的倍数 6 F6 I7 d8 {$ \0 ~( ^! t
 : k& H+ M6 ^: ]  U1 f# n$ R
 ax.yaxis.set_major_locator(ymajorLocator) 6 Q3 t$ h" ?0 R, h$ r, u
 
 ) N, C+ v* `# @5 j7 G' Z& Yplt.plot(t, r1, marker='o', color='green', label='1')
 4 R2 K* h0 @) t+ K1 d8 y" T1 ^/ t, d& H# C5 n5 Q' D  R# D+ d
 plt.plot(t, r2, marker='D',color='red', label='2')
 ( L2 k, u8 b# f3 h1 m  |- ?- _3 V) @( f3 E/ P/ q7 ~* Y
 plt.plot(t, r3, marker='+',color='skyblue', label='3')
 7 L- O  ^0 O0 k" Y$ D0 H) ~% N9 C7 F4 \
 plt.plot(t, r4, marker='h', color='blue', label='4') ) h5 k7 O3 }% l8 q0 Y* @
 * A1 f  C6 S3 ^- Y5 K. Y
 plt.plot(t, r5, marker='_',color='yellow', label='5') 1 U% `# M, R9 b4 z0 q$ T
 
 . a7 |' j. z/ W1 x  V#plt.plot(t, r6, color='red', label='6')
 & v% i  n7 W. J) y$ S$ z" k) Q( Y" U  X* S
 / h. @; Z7 S+ r9 ^# ?
 # t) c% q& n, k
 plt.legend() # 显示图例
 6 ^8 s/ ?$ v' l  W1 s4 V4 k5 |
 ! x. P. x1 s2 cplt.xlabel('iteration times')
 2 M( R+ M- }9 B
 * P' S# q( Z5 o4 |5 rplt.ylabel('r')
 P, ~1 W# |, v2 W1 c: K% g" N! i. D$ S) W7 j# t$ c
 plt.show()
 & a+ c( Q5 ]1 o, H2 M- H9 o
 0 h# F$ d3 j, y5 ^0 U% ^0 h8 y9 A; x7 Q
 独立编组结果如图:
 1 V; h( j: r" N
   7 v! O0 }3 u% g0 J- a& ^& u& m5 R6 J; O
 
 4 ]9 C1 `+ |1 b# e- b9 \$ `( Ak1独立编组
 8 ]( z0 Y! n, B  Y好的,从图像我们来看看Kuramoto模型在描述这个编组的时候,5组最终稳定,我们说这个团队编组还算科学,但我们改变一下K的值,换成分散编组:9 T' w2 {  O  U% K& c# z
 
 % O3 j' D* ~. `& y% R1 tk2 = [
 $ J6 l+ _: X, b! X# _+ P
 k1 v7 i# n8 c  {) _[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],   q9 ?) V% S% D+ w2 D3 h' M
 
 0 v. }; o7 L- p5 Q; p. n[1,1,0.9,0.8,0.7,0.6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2], ! p' z6 K  ~2 \3 Y, E
 # u3 _3 A- H: L1 z! n
 [1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
 3 R( P( `3 O8 F, v' D7 F9 {
 ! A8 t5 A7 J; ]3 O7 C! ~) U# \[0.9,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
 8 `; w; ]4 {  G4 A
 " g# G6 w, L9 g% |/ x9 x[0.8,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], # B3 M# S" v4 N) X4 B0 d
 
 9 h' L8 C+ b  N# H) _) Q8 S, M[0.7,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
 ) J5 u. G# L! d7 ?( v* E. P( p( K. f
 [0.6,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], " c) K1 x7 ^" G: L& r
 
 0 x" t4 F) }% w2 `# Y0 {[0,0,0,0,0,0,1,1,0.9,0.8,0.7,0.6,0,0,0,0,0,0,0,0,0,0,0,2], 2 E& j6 \! ~4 A* [
 $ E3 V1 ]! y( Q* `; N
 [0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
 , C, Z7 Z0 p0 A
 / S) p, a7 z5 K* T# L/ ^# A3 R. s[0,0,0,0,0,0,0.9,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], . C7 l! w* w, [' z0 Q: e/ [5 j, X
 
 7 a/ E+ Q! F1 a2 M0 h3 z$ _[0,0,0,0,0,0,0.8,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
 2 s2 V4 `# N; h+ ~& F
 9 e9 G- U2 B! S5 G; j+ a+ b! L[0,0,0,0,0,0,0.7,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
 # v( A+ w" B1 \  A
 0 [( W5 n2 ]) c[0,0,0,0,0,0,0.6,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0], 0 Q+ X) E) b0 N8 d
 
 3 h+ D. {; n  i5 Y3 V! V[0,0,0,0,0,0,0,0,0,0,0,0,1,0.9,0.8,0.7,0.6,0,0,0,0,0,0,2], * i! e. e' M# M% V9 X  e
 8 s; ^6 I% D4 R
 [0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0], 2 C& Z) w0 ^: A$ [1 T
 # i) ?2 f* F( J
 [0,0,0,0,0,0,0,0,0,0,0,0,0.9,0,1,0,0,0,0,0,0,0,0,0], # ]( Z% ]6 T) H& o
 
 , A& j' O  b& g  q9 N. E$ O[0,0,0,0,0,0,0,0,0,0,0,0,0.8,0,0,1,0,0,0,0,0,0,0,0,0],
 ! Q& d4 |2 ?* _9 p7 f7 \4 l' W1 r1 L( E. j) M. G% L. I0 h& l
 [0,0,0,0,0,0,0,0,0,0,0,0,0.7,0,0,0,1,0,0,0,0,0,0,0,0],
 $ Q) X- P# H! |0 [* P" d3 W  M7 Y4 r* |2 A0 d( X  l7 }- j8 t: s4 n
 [0,0,0,0,0,0,0,0,0,0,0,0,0.6,0,0,0,0,1,0,0,0,0,0,0,0], 5 f2 R" [2 s1 H6 B; X* F- }
 # H& {8 T$ h- W5 ?
 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.9,0.8,0.7,0.6,2],
 ' H( P2 V) w; G2 q
 U: D, l1 g4 b) |- D1 i6 y[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0], # {6 s5 n  j( G; J
 # h2 @, @! s6 q7 a
 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.9,0,1,0,0,0,0],
 8 _- x$ b5 b2 V7 i) g2 f* Q7 W/ g: h9 r
 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.8,0,0,1,0,0,0],
 ( A. K: x( d0 T% `1 e
 & l+ w7 P; P# C1 c1 I[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.7,0,0,0,1,0,0],
 " b: ]; W8 Z1 F, ?  \( H0 Z
 ; \; c1 b& r0 v- V2 w% o+ }[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.6,0,0,0,0,1,0], + ?6 C8 X+ P  j$ _7 z( Z
 6 a0 e+ y2 J( K0 M2 C+ x' k
 [2,0,0,0,0,0,2,0,0,0,0,0,2,0,0,0,0,0,2,0,0,0,0,0,1]
 & [$ }1 x& _6 V. N1 n) O
 6 H# J: h6 F* o8 E1 q: Y0 a/ c9 C  [# a7 Y7 t+ d! o$ Z5 T
 3 n8 W" I1 `, q) s
 k2独立编组
 6 A7 A! Y: g3 e$ Z
  : T; v/ C3 o/ D0 Y) g 
 6 a* G0 D5 J' L$ x8 B# S
 * n3 p0 }7 _# {  |这两幅图像都在开始阶段大幅波动,而后在一定范围内趋于稳定,那么到底哪个分组模式最符合实际,最能突出编组能力呢?6 L5 o9 I1 z' h" h+ ]* I) S7 o
 8 @; A( @  w" ]# }( [
 这里还有一个公式,来解决这个问题,编组同步能力的量化:8 C$ @$ ?( D$ X5 h0 J
 
  # n& f5 t" |# Z4 Z4 | ( |7 s. S8 @2 m5 Y
 M_{s} 就可以描述某编组的同步效果,r_{s} 是达到稳定状态后序参量的均值,β∈(0,1)是调节因子。我们可以用M_{s} 比较编组内部的好坏。那编组间能力的好坏怎样比较呢?5 c' H4 D# n* G/ o/ o
 4 y) n6 ^5 |2 k) p) c
 这个Kuramoto模型同样有所考虑,它有一个描述整个系统编组能力的公式:
 % Q, J/ Z/ n2 I7 ]# |0 s
   : S3 G. y' G2 r* P' `2 P% u% c( Z! L
 4 ^1 H/ L0 K( J5 V! N% ^其中,P是编组的数量,M_{i} 是第i个编组的同步能力,\omega _{i} 是编组在整个系统中的权重,\psi {e} 是各编组平均 相位的均值,\Delta \psi 是各编组平均相位的标准差。具体的计算不是这篇文章的重点,就不在计算M{s} 和M的值来比较上述例子独立编组和分散编组的好坏了,本篇文章主要是讲下Kuramoto模型的解决思路,尤其是上面解决\theta 值的方法可以套用在其他Kuramoto模型中,做一个目标估计绰绰有余的。
 9 s9 N$ @( Q8 b/ X
 / {  B/ K: {2 N% z4 @5 E% ]下面是解决Kuramoto模型常用的MATLAB编程方法,具体思路与上述基本一致,这里不再赘述,K的值我们给另一种编组模式:不完全分散编组模式,也是现在实际上最长用的编组方式,直接上代码:
 ( M5 v  h+ H4 c3 J2 \& p) J  h9 n' v5 `) F
 clc;
 9 W0 Q( ~" f+ ~% M; m, N8 q5 f4 u/ Q' V
 clear all; ( E+ y& R+ v7 w
 . W% w6 G% K+ @0 ~) p* p! \
 k=[0  1  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0.5;
 $ D) v  r6 H5 s' r3 a/ r9 W3 q( F1 g
 1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0;   " p/ o4 w. l2 f9 t+ k* |
 : M9 D0 W- z+ L8 {! M" v
 1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0;   0 @4 G% i. {6 A6 B' q( y. n
 
 # X9 e; g! C# Z- |  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0;   7 _! P# ~' M" k
 
 ! r+ a1 G. A& ~. ~+ l  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0;
 ! l, t' K; y# A! Q# }9 V6 C) w& v* Q1 r
 0  0  0  0  0  0  1  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0.5; 0 {+ w$ f; i# h  }
 3 \8 W5 ]" ^0 D' @5 I% ~
 0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0;   . {# t3 a# p) `8 `+ q6 b& W& M
 
 Z$ @5 \- A& y. G  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0;
 ; I3 }- `; M, q. q7 b0 ^* l' e
 6 G5 j$ L8 q( g  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0;
 + z0 h+ N' E# B: m5 b& L+ }$ U  J  y/ q
 0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0;   9 c* I" Y  J: a+ ~, Y
 F* f- ~1 l: Q
 0  0  0  0  0  0  0  0  0  0  0  1  1  1  1  0  0  0  0  0  0  0  0  0  0.5;
 9 s2 S/ d; M! ~' e/ J, |$ t  ]$ M& F3 n7 }
 0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0;
 * J8 h8 N8 P. H3 l* ?3 J5 [8 o% r2 ]' A2 ~0 Z2 X
 0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0;
 : p7 D$ F7 [6 M: m# [
 # J7 |  w! y7 O+ J  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0;
 % v# W' m0 o# n1 h; ^" E' [/ c
 ' q9 P0 ]0 N7 S! [  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0;   / D  d6 h- t2 {9 O+ p6 G0 u
 ( X: O, f! O* H) z0 q* g$ \
 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  1  0  0  0  0  0.5;
 0 ?3 y. g" r% U7 J- [6 M4 k! k
 4 s5 ^4 Y( m& Q8 j2 c  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0;   0 l+ J# H/ Y) l; g6 K
 
 9 d, G* M1 M0 w  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0;     T) l# u2 B" d6 j$ K- l5 A
 
 8 C! @  H0 T/ B$ U$ s* |  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0;   , f' g9 b  R: o( S* Y* O
 
 , O. a3 w' q: c1 n# P" d  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0;
 & p  r  ]2 s2 ^9 u- i  J* G9 x" {+ a( b7 M1 D. Y/ L0 D$ K6 c
 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  2  2  2  0.5; + ~( z; X' ^! `! P, K) g
 
 % z, L/ l$ a0 i, g  ^3 ~  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  2  0  0  0  0;
 6 I, ~6 n; g7 K) u, w- E: }0 L  }, f8 v. M) c' I
 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  2  0  0  0  0;   ; a  W4 r3 Z4 n) x% d
 & f: U% ?0 X* D
 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  2  0  0  0  0;
 # Z; U9 P- ~  z1 N5 P1 D
 + s$ a% O+ T) `# Y6 C' K3 \2 H- Y  0.5 0 0  0  0  0.5 0 0  0  0 0.5 0  0  0  0  0.5 0 0  0  0  0.5 0 0  0  0;
 7 |  j# T. q( u+ S7 }7 D& w: }9 U
 ]     , Y7 s5 J# s- w, [+ j3 o% u
 - P3 s6 _  k8 k9 j( }
 N = 25;
 7 `% |" B$ ]/ P+ M8 T! Z. Y! K' R  ~' ?
 $ b% K& }  _3 l. C8 KStep= 10000; 7 F& V* b8 z1 O
 
 3 B! f3 v! A) ^, s1 ]9 bTheta=zeros(Step,N);
 / j* f% t: R3 I2 d3 ?& G+ S: F- c- v# @
 Omega =zeros(Step,N); , {( Q' d) E: F# T: n( r
 
 2 B. Q0 |1 F6 K2 a8 nDeltaT=0.01 " r$ Z3 v( B( `( i) H+ |4 Q  R
 
 N: e* x0 U$ M2 W* v$ }% x: nTheta(1,:)=[0 pi/2 pi 3*pi/2 0 pi/2 pi 3*pi/2 0 pi/2 pi 3*pi/2 0 pi/2 pi 3*pi/2 0 pi/2 pi 3*pi/2 0 pi/2 pi 3*pi/2 0];
 5 S  P- R4 ~# O  n5 q% v
 5 X7 q4 M5 w  U9 p" J- XOmega(1,:D=2*pi*[2  3  3  4      4 2    3  3      4 4    2  3      3 4    4  2      3 3    4  4      2 2    3  4      1]; . O9 X' |4 P, D' g4 t- c$ Y
 
 0 U; v. C# b/ L7 [! w, x( f- c%  求解微分方程 2 ^( n& D+ y! u1 D( d
 9 }2 M- \2 w( N# L' N, ^. Q! a
 for n = 1:Step 0 l1 }  f/ @$ @3 b7 }1 P
 ) W. {+ b) u0 C4 x; M+ w0 u
 for i = 1:N 0 P+ C$ L6 x6 Y2 W2 y
 3 X5 Y8 ^& B3 V
 Sigma = 0;
 3 Q) M( b2 ~' x+ _: g1 V4 n: X, q6 I6 T+ y
 for j = 1:N
 # d/ |( M  s9 C; e* n" k: ?* y" C
 " f4 U- e% ]% l% V            %%判断k对同步效果的影响
 ( v3 B; P7 E' l# u, W; H; S
 ) I% q& `. l  S! z= Sigma + k(i,j) * sin( Theta(n,i) - Theta(n,j) );
 6 c- h4 t7 g% w& a) a# R, `! S! ]! g( T
 end
 3 B" {& Z! S8 ?: i4 F) M& f5 F# G4 v$ k: @
 Omega(n+1,i) = Omega(n,i) - Sigma;
 ; T9 R; g! E/ B. v2 I, {, J. G. N) e# Y9 ~  B8 t% b
 Theta(n+1,i) = Omega(n+1,i)*DeltaT + Theta(n,i); 7 T4 v/ C. _5 z8 Z
 P1 ]5 S, {2 P; T; _+ a
 end   L8 s9 L: D1 G; N1 T2 o
 ' M5 a. e/ V% ]0 M  e
 end
 , X- {! i0 ~3 R. \( n5 z% Y, k$ ]7 E# W  P4 H: {
 %  求解序参量r(t)
 - Y; U9 f/ n, G
 ; ~6 |4 f( T8 G! v3 UgroupN = 5; " e* }6 r) C  e) A1 x9 y
 
 3 g( T. Z% k: D# V' \Step = 1000; 1 g2 w5 i& T( `& F
 
 - r. ~! C  p, r+ H# x5 dfor i = 1:Step . |! v- q  c5 y- @
 
 * S3 h1 i7 w/ f    sigma1 = 0; # p  @. d* m3 z, B+ i' F
 
 ! K& S0 f; L( ~+ ~% {1 j& I- d2 u    sigma2 = 0;
 ( u: Q& A2 n. g/ s) g: T; {" Y7 ^0 i* |# l( J* z3 n; i
 sumTheta = 0;
 i$ l  u0 A6 r# p1 O0 N; g% K7 A* v8 D) N6 m/ a  \' g# g( ^0 r
 for j =6:10  %表示相应的群组
 + |$ C$ W. {+ _4 W. M6 v, h6 w# w# L8 u9 t! [7 M
 sigma1=sigma1+cos(Theta(i,j)); % B# ]6 `2 _! u
 
 9 m7 V# ^) Z( H4 j; m! c6 ~        sigma2=sigma2+sin(Theta(i,j)); ( E. G$ E3 u: n2 p: k* o$ X5 [. Y; l
 3 U: e3 J5 U8 }& x+ K! Z
 end , V. a6 s- E7 C* ^
 ' ^& o3 _% l& e8 c( `
 r(i)= sqrt( sigma1^2+sigma2^2 )/groupN;
 % o' I' }0 x1 q/ `
 & D& G3 X& |' ]9 M. Y  Xend ' n: ^" x) v$ f* L) I% f0 Y
 , y* [, I( h5 \- J4 I: w1 N* p2 a* V
 x= 0.01:DeltaT:DeltaT*Step;
 " q4 H- S' p1 g+ q/ I) q. B$ x2 p  m
 plot(x,r); + R. ?  z# D* {! w9 i! d1 b8 P0 A
 MATLAB版不完全分散编组结果如下图:5 P* g, @7 q3 g. l
 
   2 a' i8 {* r7 P
 |