|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
高斯混合模型里面的参数可以用到混核主元分析里面吗?有混合概率主元分析的EM算法的程序吗0 q* @& l9 {$ Y" h6 p8 A' S
function ppca_mixture . e4 j5 ^) C3 P( K
filename = 'virus3.dat';' G6 w, }6 r, Z1 w
T = importdata(filename);* \: g' R( T4 z& m, ?
[N, d] = size(T);
X$ y9 K0 V% X M = 3; % number of ppca analysers considered 考虑的ppca分析仪数量: S T% C( M5 }5 x# f+ Y) ]
q = 2; % dimension of ppcas ppca的维数# |5 b& B0 Y$ W; y, v" Z/ L- u
% init" u" g9 Q- c. x h. L
% initializing the posteriors (p(i|t_n), indexed by (n, i). R in text)
6 D" u0 c5 i, J( i. q- F$ e %初始化后验(p(i|t_n),在文本中由(n, i). R索引
0 o7 L3 R, q [- G" E classes = [3, 3, 3, 3, 2, 2, 3, 1, 3, 3, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2];( u' }! p* ?8 f% Y
for n=1:N8 ^8 X" U8 P# a
for i=1:M
- l: A) ]- J! G, T% h0 w5 o if(i==classes(n))
0 j6 s7 i. O Y1 Q# U3 _ posteriors(n, i) = 1;
- A [# {; q% x1 F# i4 m" m0 S else! T! y1 n* a. d; ~7 [: Q8 [
posteriors(n, i) = 0;
/ O! C0 i# e7 w0 o end
" Q9 m |( t) y5 R end K' R1 B/ Q! i; F
end/ {' @$ ?! c6 P4 R d
% precision for convergence checking 收敛检验精度. ]. b( C% Z1 f$ m
epsilon = 0.01;! c- \. n$ U+ A3 c, V* M! ]; o5 |
entered = false;$ x$ q9 u$ q1 P) a
7 R+ g X/ R& {* ~
% loop
$ B! O# A$ B/ P4 E while(true)
1 @- r7 C0 r( { ] % updating priors (p(i), pi in text) and mean vectors (mu in text): E" `% Q/ N0 R. R) Y
% 更新先验(p(i),文本中的pi)和平均向量(文本中的mu)
7 e ?6 q- X: Y new_priors = 1/N * sum(posteriors);
6 J7 U2 ] X7 _- ^ new_mus = zeros(M, d);2 j, x+ \; Y* P; d" q- Q( U& I" c
for i=1:M2 T" K8 U5 k; s( c2 ]; l$ X/ ^
for n=1:N ]! K+ {1 S5 q" M- x& }
new_mus(i, = new_mus(i, + posteriors(n, i) * T(n, ;
% C% @3 E _, P. @- G3 H end
' @. K* U' J4 v% I$ e" m3 A new_mus(i, :) = new_mus(i, :) / sum(posteriors(:, i));% R6 y* K$ H2 H |$ G R
end
; {8 c9 p- _. L% k. A" R N4 T4 C, I# ^9 g1 u3 t
% computing covariance matrices (S in text)计算协方差矩阵(文本中的S)+ V9 F' Z; J$ Y/ d7 a5 Z
covariances = cell(M);
, s$ t9 e% r$ J4 z: e% Q for i=1:M" j0 V. N7 O+ O$ p6 i
covariances{i} = zeros(d, d);( _! s: {6 Z* W, F1 y5 Q
for n=1:N8 g6 I6 O. J2 ]6 y
covariances{i} = covariances{i} + posteriors(n, i)*(T(n, :)' - new_mus(i, :)')*(T(n, :)' - new_mus(i, :)')';+ v* N. K) F3 N9 |/ p
end- M( O% \: r7 ~ k0 I
covariances{i} = covariances{i} / (new_priors(i) * N);/ t; w2 L6 e. Z% a) B
end
/ U( C& X/ a: B$ y9 _# c; W6 I6 g- [- _$ i$ g
3 h" h) J/ a5 G/ o) J& F
% applying ppca using covariance matrices 使用协方差矩阵应用ppca
& R& O. v! D& ]+ ~2 V % (Ws are weight matrices; sigmas are variances) (Ws为权重矩阵;(差异)
/ w5 Q: W6 o) h }; x. B new_Ws = cell(M);) ~+ v2 X. `# Z& C, b5 L5 w
for i=1:M' F& S8 o% g" H+ ?
[new_Ws{i}, new_sigmas{i}] = ppca_from_covariance(covariances{i}, q);
5 V) U* T* Y+ h: G' ^1 Q0 P8 t end9 S# b* d1 T8 T( C
6 K- R! [9 ^0 Q/ m % convergence check 收敛性检查: ]/ g" H% _% n: ?
if(entered && max(abs(new_priors - priors)) < epsilon && max(max(abs(new_mus - mus))) < epsilon && max(max(max(abs(cell2mat(new_Ws) - cell2mat(Ws))))) < epsilon && max(abs(new_sigmas - sigmas)) < epsilon)9 @; D: x, j$ X8 s' `/ S( L
break;% u& J# Y5 T' f9 N+ h4 p
end) i( D. }1 M! ~* ~; k
: h7 G+ e! K) N. E |( Z2 E % replacing old parameter values 替换旧的参数值
2 w) B+ i2 d- t3 X7 J priors = new_priors;( a8 e6 g+ _4 ]: w7 e/ G _" c
mus = new_mus;
! p6 s# t7 A: B" U Ws = new_Ws;( ]9 N; k, j4 I* e k j ?
sigmas = new_sigmas;1 c* N% H( f; Q" k
! m( k0 u x9 U" [9 e, `/ {1 S % computing the likelihoods (p(t_n|i)) 计算概率(p(t_n|i))# C" A# C' B& A V/ \, |
for i=1:M
, Y& }2 n% k- Z C = sigmas{i}^2 * eye(d) + Ws{i}*Ws{i}';
! O8 `* J' O% g8 ^ detC = det(C);
% h* D& V4 ^" W. |6 z- y. ]8 _ invC = inv(C);
6 `/ z! O# C# O t) Z0 u) ~8 | for n=1:N$ N" a9 _7 B; }' ^: U2 H
likelihoods(n, i) = (2*pi)^(-d/2)*detC^(-1/2)*exp(-1/2*(T(n, :)' - mus(i, :)')'*invC*(T(n, :)' - mus(i, :)'));
3 _) W2 N4 A+ o* s# v6 a end& ~, \& e0 l v0 g5 d1 y* u( e- U' B
end
% S( O8 M. j6 r5 g* h3 p % computing the joint probabilities (p(t_n, i)) 计算联合概率(p(t_n, i))
2 {" ?8 b$ l; Q for i=1:M
$ T8 O( k! A U* D* C joint(:, i) = likelihoods(:, i) * priors(i);% T8 C; }; i* \+ f0 C) _9 g7 W$ x, s; v
end$ y/ a4 U6 R, S4 @
% computing the data priors (p(t_n)) 计算数据先验(p(t_n))% t" c& u/ K2 B4 w- t v" \
data_priors = sum(joint');
, E* f9 D/ \, o$ L % computing and displaying the likelihood of the data set 计算和显示数据集的可能性
) O) V: j6 b" F) J0 M+ ` disp(sum(log(data_priors)));! y$ n& q% }% s( g2 r/ q
% computing the posteriors (p(i|t_n), indexed by (n, i). R in text)
1 e* X U6 ~% E+ a& J# a % 计算后验(p(i|t_n),用(n, i)索引。R在文本中)$ a' i+ D& i' G! d. B( B# H
for n=1:N4 J+ [$ z3 m; Z6 P
posteriors(n, :) = joint(n, :) / data_priors(n);
& |6 J9 Z9 M0 ?% S6 m end
) r- T0 v0 A6 ?1 d* c1 S7 q% \& K8 G' b; z; @( n3 w
% we went through the loop at least once 我们至少做了一次循环
2 n' ]0 {! ~. _, Z" g0 V/ l entered = true;
# Q! V; e1 A! T end; L" O* e; v$ m F+ W+ {$ v% T
1 L, a- J/ a" p
" H- X- }( b8 V$ G, I$ _ % computing the latent variables 计算潜变量& w0 o8 ]7 z1 v
latent = cell(M);
$ |1 O, J8 q1 K9 P* y* Z0 \$ z* \ for i=1:M% P# o; R R( f' A% i6 T
latent{i} = ppca_latent(T, Ws{i}, sigmas(i));
/ z9 Z! l0 L" x) |$ f$ K- J5 \4 c' a end
6 P$ }5 s. H1 ^; S9 a/ W % selecting likely points for each ppca analyser 为每个ppca分析器选择可能的点
6 R. E/ f' l; O4 K: k% M1 R0 A- ~5 h* F' N for n=1:N
* d4 M+ X5 v3 J4 {6 c [~, i] = sort(posteriors(n, :), 'descend');$ i9 `. r3 x% E
points_to_classes(n) = i(1);
2 r" E" ^9 @( p' H end) N; I; @0 R8 `
classes_to_points = cell(M);
1 V' M+ v2 u( v3 x/ T classes_to_point_numbers = cell(M);8 k, X' d2 X' }- @
for n=1:N0 G* S+ [: L/ e9 @) b8 |3 V: L3 d# w0 Z
classes_to_points{points_to_classes(n)}(:, end+1) = latent{points_to_classes(n)}(:, n);+ M$ N/ {% w9 P2 x+ s) a
classes_to_point_numbers{points_to_classes(n)}(end+1) = n;
" z) `5 M0 v6 T" A# k3 t end
7 m1 O& L4 ]4 S e! {3 f# z% a& L8 v
% display the results of the automatic classification 显示自动分类结果1 ?& L4 i+ \3 a" g# X
for i=1:M' J1 y" F, x8 L0 W; Y& ]2 y
disp(classes_to_point_numbers{i});* w2 `- P3 |) r9 |. k: t3 C
end6 j5 j0 p" Z* v4 D* @: y
/ x6 M% d$ }) V6 O ppca_plot2d(classes_to_points{1});
' O, O( R T2 nend# c+ W: a0 D$ f( t+ y
|
|