EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
本帖最后由 zmmdmn 于 2020-11-23 13:35 编辑 ( v/ l( h# i9 }- \! k! q
5 O. t/ h1 ^7 D1.数字信号处理原理/ W/ i; t. h8 X4 S3 Y' q
+ P+ o: M/ ^9 E5 P 线性系统中,信号只能以乘以一个常数之后再相加的方式进行组合。例如,一个信号不能直接乘以另外一个信号。如下图所示,根据给出三个信号:x0[n],x1[n],x2[n]相加得到最终的信号x[n]。通过相乘和相加的形式进行信号的组合被称为信号的合成。 与信号合成相反的步骤,叫做信号的分解。即把原始信号分解为两个或多个信号相加。信号的分解要比信号合成要复杂些。试想,假设我们把15和25相加,那么我们只能得到40,;相反,如果我们把40分解成两个或多个数字的相加,那么这种分解会有无数种形式,比如1+39,2+38,-30.5+60+10.5。
图1 数字信号处理中,最为关键的步骤是信号的叠加。假设有如下图的输入信号x[n],经过一个线性系统之后,输出信号为y[n]。输入信号可以分解为多个更为简单的信号:x1[n],x2[n],x3[n],这些被称为输入信号分量。之后把各个输入信号分量单独的输入到线性系统中,产生与之对应的输出信号分量:y1[n],y2[n],y3[n]。原始的输入信号经过线性系统之后,得到的输出信号y[n]即为各个输出信号分量的合成。线性系统中,通过这种方式获得的输出信号和原始信号直接通过系统得到的输出结果是一样的。正因为如此,任何复杂的数字信号,我们应该把它分解为更为简单的输入信号分量,经过线性系统后把输出信号分量进行合成即为最终的输出信号。但是,如果分解的输入信号不够简单,那么这样与分解之前的效果是一样的,需要复杂的计算。 假设你需要计算2014乘以4的结果,我们可以这样进行计算:把2014分解为2000+10+4,分解的系数分别乘以4再相加即为最终的输出结果。这种方法比直接把两个数相乘要简单得多。
图2
- s' A2 s( y7 [ E$ ~ + @- \) l/ ] S! K o' g, W) r! j! h
2.卷积
0 z) |2 _, G3 _8 Q0 Q* q1 v2 v4 G R( d: R0 z
脉冲分解 脉冲分解是卷积的基础。如下图所示,N个采样信号经过脉冲分解之后,形成N个信号分量,每个信号分量只包含原始信号的某一个采样点信号,而其他采样点的值为0。假若某个信号只有一个非零点,其他各点数值均为0,那么这个信号被称为脉冲信号。
图3
2 j/ X: Y; p! ` U2 w# ] : y Q- \* w4 L4 n; t. o1 R
脉冲函数 Delta函数用希腊字母表示为o[n]。delta 函数是一个归一化的脉冲信号,即在采样点零点位置其值为1,其他采样点位置各点数值均为0。 脉冲反应 当线性系统中输入信号为delta函数时,其输出的信号称为脉冲反应。如下图所示。如果两个不同的线性系统,当输入信号均为delta函数时,其输出分脉冲反应也是不同的。就像离散数字信号中,用x[n]、y[n]分别表示输入信号和输出信号,脉冲反应使用h[n]表示。当然,你也可以使用其他的符号表示,比如f[n]等。 任何脉冲信号都可以看作是脉冲函数的平移和缩放。例如,假设信号a[n]只在采样点8的位置有输入,且其输入值为-3,这就相当于把delta函数平移到8的位置,在乘以-3.用公式表示为:a[n] = -3 o[n-8]。假如delta函数的脉冲反应为h[n],那么a[n]的脉冲反应为-3h[n-8]。 # t+ f0 e; R# A
卷积就像数学的加减乘除一样,是一种形式化的数学运算。数学运算中输入两个数得到第三个数,卷积则是输入两个信号产生第三个信号。卷积被广泛应用于统计和概率中。在线性系统中,卷积描述的是输入信号,脉冲反应和输出信号三者之间的关系。
图4
" L, ?# ?* @! m1 i1 @
5 Z5 b% f$ w! d) v; b 上图描述的是卷积应用于线性系统的示意图。输入信号x[n]进入有脉冲反应h[n]的线性系统,产生输出信号y[n]。用公式表示为:x[n]*h[n] = y[n]。 : l8 S5 Z% \4 Y( i
|