EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
BP神经网络整定的PID控制算法matlab源程序,系统为二阶闭环系统。
: T" I8 l* u3 J; u%BP based PID Control clear all; close all; 0 T7 P7 {! Z' d- U+ ~' |
xite=0.28; alfa=0.001; / ?+ f9 K# |/ X6 Q
+ h0 x; C* Q0 N2 x2 _# o$ n
IN=4;H=5;Out=3; %NN Structure ! e; @+ t$ e) O
+ o9 K; w' T' ?" c, I% O, i6 A
wi=0.50*rands(H,IN); wi_1=wi;wi_2=wi;wi_3=wi; ) o X3 n h+ s' H% d
+ o4 k7 p! o: f7 s( Wwo=0.50*rands(Out,H); wo_1=wo;wo_2=wo;wo_3=wo; }4 f i$ O; t( N3 [
: a0 j4 W9 L4 J( t4 M- l% R
x=[0,0,0]; u_1=0;u_2=0;u_3=0;u_4=0;u_5=0; y_1=0;y_2=0;y_3=0; * x* z7 v; i2 h" Z1 {" M6 s' |
Oh=zeros(H,1); %Output from NN middle layer I=Oh; %Input to NN middle layer error_2=0; error_1=0; ( c; j% S$ }- y% `. ^; b4 r" Q
ts=0.01; sys=tf(2.6126,[1,3.201,2.7225]); %建立被控对象传递函数 dsys=c2d(sys,ts,'z'); %把传递函数离散化 [num,den]=tfdata(dsys,'v'); %离散化后提取分子、分母 for k=1:1:2000 time(k)=k*ts; rin(k)=40; yout(k)=-den(2)*y_1-den(3)*y_2+num(2)*u_2+num(3)*u_3;%这一步是怎么推的(问题1) error(k)=rin(k)-yout(k);
, Z" \% Q* I6 V r' rxi=[rin(k),yout(k),error(k),1];
7 ^* s8 b; ^% P: w& X3 Ex(1)=error(k)-error_1; x(2)=error(k); x(3)=error(k)-2*error_1+error_2; 9 b4 J3 H5 Z4 u6 i7 E
epid=[x(1);x(2);x(3)]; I=xi*wi'; for j=1:1:H Oh(j)=(exp(I(j))-exp(-I(j)))/(exp(I(j))+exp(-I(j))); %Middle Layer end K=wo*Oh; %Output Layer for l=1:1:Out K(l)=exp(K(l))/(exp(K(l))+exp(-K(l))); %Getting kp,ki,kd end kp(k)=K(1);ki(k)=K(2);kd(k)=K(3); Kpid=[kp(k),ki(k),kd(k)];
& e+ G" b: w# @& L- P4 |& Ydu(k)=Kpid*epid; u(k)=u_1+du(k); if u(k)>=45 % Restricting the output of controller u(k)=45; end if u(k)<=-45 u(k)=-45; end
4 H+ i' r: j) t0 K; W8 idyu(k)=sign((yout(k)-y_1)/(u(k)-u_1+0.0000001));
$ A( f8 A7 Z" h9 a%Output layer for j=1:1:Out dK(j)=2/(exp(K(j))+exp(-K(j)))^2; end for l=1:1:Out delta3(l)=error(k)*dyu(k)*epid(l)*dK(l); end
4 {1 ?/ l- a3 d/ afor l=1:1:Out for i=1:1:H d_wo=xite*delta3(l)*Oh(i)+alfa*(wo_1-wo_2); end end wo=wo_1+d_wo+alfa*(wo_1-wo_2);%这一步似乎有问题(问题2) %Hidden layer for i=1:1:H dO(i)=4/(exp(I(i))+exp(-I(i)))^2; end segma=delta3*wo; for i=1:1:H delta2(i)=dO(i)*segma(i); end
, B( n+ S- w a5 a0 R1 Gd_wi=xite*delta2'*xi; wi=wi_1+d_wi+alfa*(wi_1-wi_2); ' {+ d& f4 }. T8 d8 ?
%Parameters Update u_5=u_4;u_4=u_3;u_3=u_2;u_2=u_1;u_1=u(k); y_2=y_1;y_1=yout(k); wo_3=wo_2; wo_2=wo_1; wo_1=wo; wi_3=wi_2; wi_2=wi_1; wi_1=wi;
! r) W- d( n9 }( S2 {/ J4 ], m0 kerror_2=error_1; error_1=error(k); end figure(1); plot(time,rin,'r',time,yout,'b'); xlabel('time(s)');ylabel('rin,yout'); figure(2); plot(time,error,'r'); xlabel('time(s)');ylabel('error'); figure(3); plot(time,u,'r'); xlabel('time(s)');ylabel('u'); figure(4); subplot(311); plot(time,kp,'r'); xlabel('time(s)');ylabel('kp'); subplot(312); plot(time,ki,'g'); xlabel('time(s)');ylabel('ki'); subplot(313); plot(time,kd,'b'); xlabel('time(s)');ylabel('kd'); 问题(1)和问题(2)都标注出来了。还请各位帮忙看一下,尤其是问题(1),到底如何将已知的传递函数转换成,matlab的仿真模型呢 : N, z+ N0 ~7 z$ T3 h% o" J
|