EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
BP神经网络整定的PID控制算法matlab源程序,系统为二阶闭环系统。 & U1 G7 w7 O& n
%BP based PID Control clear all; close all;
8 i2 ~9 B( D! u, ^xite=0.28; alfa=0.001;
& {$ B7 Z* j& p$ s3 }. o( Z7 A
; a, F) W5 b& D. l, K( oIN=4;H=5;Out=3; %NN Structure . F$ }6 o: V9 K8 d# a
; ]& T) i( S |8 m* G4 o
wi=0.50*rands(H,IN); wi_1=wi;wi_2=wi;wi_3=wi; . Q( T4 P% a' c! V# c. a- L/ ~
* R( h z8 `3 L2 t! ?
wo=0.50*rands(Out,H); wo_1=wo;wo_2=wo;wo_3=wo; 0 }% m1 D6 S9 r# P# j' b
& A0 e' b% D# U
x=[0,0,0]; u_1=0;u_2=0;u_3=0;u_4=0;u_5=0; y_1=0;y_2=0;y_3=0;
2 L4 P9 `7 u+ `5 L/ FOh=zeros(H,1); %Output from NN middle layer I=Oh; %Input to NN middle layer error_2=0; error_1=0; 2 r+ w/ g! V; f. d
ts=0.01; sys=tf(2.6126,[1,3.201,2.7225]); %建立被控对象传递函数 dsys=c2d(sys,ts,'z'); %把传递函数离散化 [num,den]=tfdata(dsys,'v'); %离散化后提取分子、分母 for k=1:1:2000 time(k)=k*ts; rin(k)=40; yout(k)=-den(2)*y_1-den(3)*y_2+num(2)*u_2+num(3)*u_3;%这一步是怎么推的(问题1) error(k)=rin(k)-yout(k); $ k) N% B) D# S) T. i8 Y/ x
xi=[rin(k),yout(k),error(k),1];
/ R( L3 m9 U+ Y" G; r! s4 Ax(1)=error(k)-error_1; x(2)=error(k); x(3)=error(k)-2*error_1+error_2;
1 R- \2 n2 }9 l! N' E/ y4 |8 N fepid=[x(1);x(2);x(3)]; I=xi*wi'; for j=1:1:H Oh(j)=(exp(I(j))-exp(-I(j)))/(exp(I(j))+exp(-I(j))); %Middle Layer end K=wo*Oh; %Output Layer for l=1:1:Out K(l)=exp(K(l))/(exp(K(l))+exp(-K(l))); %Getting kp,ki,kd end kp(k)=K(1);ki(k)=K(2);kd(k)=K(3); Kpid=[kp(k),ki(k),kd(k)];
+ X1 b. }/ |& N" wdu(k)=Kpid*epid; u(k)=u_1+du(k); if u(k)>=45 % Restricting the output of controller u(k)=45; end if u(k)<=-45 u(k)=-45; end
) I% Z) I& z. E& v8 D6 ? C) hdyu(k)=sign((yout(k)-y_1)/(u(k)-u_1+0.0000001)); ' }6 ]. J+ Y9 I! Z- \" [$ k8 Q, i
%Output layer for j=1:1:Out dK(j)=2/(exp(K(j))+exp(-K(j)))^2; end for l=1:1:Out delta3(l)=error(k)*dyu(k)*epid(l)*dK(l); end 3 H3 h n8 o `( i K5 W
for l=1:1:Out for i=1:1:H d_wo=xite*delta3(l)*Oh(i)+alfa*(wo_1-wo_2); end end wo=wo_1+d_wo+alfa*(wo_1-wo_2);%这一步似乎有问题(问题2) %Hidden layer for i=1:1:H dO(i)=4/(exp(I(i))+exp(-I(i)))^2; end segma=delta3*wo; for i=1:1:H delta2(i)=dO(i)*segma(i); end
3 r' r3 L+ {5 O, @d_wi=xite*delta2'*xi; wi=wi_1+d_wi+alfa*(wi_1-wi_2); " ^- L- v/ d2 t0 ^; i; q1 w
%Parameters Update u_5=u_4;u_4=u_3;u_3=u_2;u_2=u_1;u_1=u(k); y_2=y_1;y_1=yout(k); wo_3=wo_2; wo_2=wo_1; wo_1=wo; wi_3=wi_2; wi_2=wi_1; wi_1=wi;
* U. b( o, \! k- i$ B1 ^error_2=error_1; error_1=error(k); end figure(1); plot(time,rin,'r',time,yout,'b'); xlabel('time(s)');ylabel('rin,yout'); figure(2); plot(time,error,'r'); xlabel('time(s)');ylabel('error'); figure(3); plot(time,u,'r'); xlabel('time(s)');ylabel('u'); figure(4); subplot(311); plot(time,kp,'r'); xlabel('time(s)');ylabel('kp'); subplot(312); plot(time,ki,'g'); xlabel('time(s)');ylabel('ki'); subplot(313); plot(time,kd,'b'); xlabel('time(s)');ylabel('kd'); 问题(1)和问题(2)都标注出来了。还请各位帮忙看一下,尤其是问题(1),到底如何将已知的传递函数转换成,matlab的仿真模型呢
1 A8 M( W, a6 z3 }0 N; X |