EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
Filter DataFilter Difference Equation(滤波器差分方程)滤波器是一种数据处理技术,可以消除数据中的高频波动或从数据中去除特定频率的周期性趋势。 在MATLAB®中,滤波器功能根据以下差分方程过滤数据x的向量,该差分方程描述了抽头延迟线滤波器。
' I1 j" u( {9 ^' G, B
W' D( x7 @+ Z) K- p& M# X
在该等式中,a和b是滤波器系数的矢量,Na是反馈滤波器阶数,Nb是前馈滤波器阶数。 n是x的当前元素的索引。 输出y(n)是x和y的当前元素和先前元素的线性组合。 滤波函数使用指定的系数向量a和b来过滤输入数据x。
Moving-Average Filter of Traffic Data* v+ B0 Y5 @# [
滤波器功能是实现移动平均滤波器的一种方法,这是一种常见的数据平滑技术。3 k1 C9 g# B+ i( |
The following difference equation describes a filter that averages time-dependent data with respect to the current hour and the three previous hours of data. (以下差分方程描述了一个过滤器,它根据当前小时和前三个小时的数据平均时间相关数据。)
导入描述流量随时间变化的数据,并将第一列车辆计数分配给向量x。
* m. E! v$ b5 f% X) ^. t' ?+ O; T, p: _ `- M' \
clc
9 J8 _! ^1 l( T' {5 q6 A: _+ Q" A/ E7 O- Y g: P
- 9 |: ^! j& Z3 s. K! V
% O1 \' Y3 B* |
clear
/ h7 X2 n* m) b+ U8 W C: P, r8 E- k2 v4 X7 c: H% P7 u
1 |% Q$ |- Q( G% ? {: |" P Q0 ^6 K! P9 E
close all& {8 C8 f7 {6 ?1 @
4 }0 ?2 o; A" N4 m3 N Y* {7 x6 W
- 1 ?/ z5 b0 d/ a8 {
8 C" n* t3 T2 P& d; M+ H# }5 ~- A/ |; h) x3 F+ I& R
0 x; e f" |# p( s2 N - $ Y& ?1 Y( g# l* I! r
# b: M' s2 r* J |# y8 J% Import data that describes traffic flow over time, and assign the first column of vehicle counts to the vector x.4 E5 `0 \7 F/ z# Z# N: v0 Y
1 Y* G- I+ a5 f8 I2 ^" I1 Y
- 5 F0 g- O, }6 o3 W2 i/ ^ E
# c0 Z! u7 L& e$ ~6 j" l/ d
load count.dat
) H8 i# @1 E/ G- E& y4 E ~) N3 k* G: I
6 v2 S: o" U4 U5 a, T8 J
2 A8 Y. C7 k& a, r8 P% w( rx = count(:,1);
# C9 d2 M4 J6 q* t
1 ]. D8 T; i( `5 L
, J9 X. `% {1 _% h2 y3 e" U: @8 V# _3 e
* ^# I/ U5 v& P! x1 c
7 m- p& x: L6 B6 L% t
6 H h! K- L& g d+ }9 g2 a2 j/ ~: w$ B
% Create the filter coefficient vectors.- t; k' o; [) U. |
; `8 R& W( _% l" a; Z8 B
1 u0 E: u7 p& ~ ?. t
0 e, {& l+ P+ i9 {0 m5 ia = 1;
N: X6 t5 P9 \7 D" K& _
! x. ?6 N4 F% _1 Z- * [3 q( Q: @; ~& O' P# z
9 v% J0 s2 h$ ~* |7 C9 g
b = [1/4 1/4 1/4 1/4];. N3 i- J# ?- o6 v; N
, B. Y! E% i3 b: \ - ) y) ?: K7 l7 Z# `; F
: J. r/ k- i) S, {! v$ W! D
8 A5 }' `: S% \- u+ l
; ~! k* D7 l: ^' l& X
9 S( t# o/ G* V: Q
9 G( ?# M' P- r. [% Compute the 4-hour moving average of the data, and plot both the original data and the filtered data.+ P. D$ a7 I) [
I1 L8 a/ G3 ]/ ^2 [
1 y6 V# T1 X- J' z: }, H# d* D& d+ p0 s$ @2 x: P
y = filter(b,a,x);
7 \! b# {- D+ h! O3 A' o; n ^% W+ z9 H
% D. J6 ~- P$ }
& [ H# E* V0 H/ c z
! e! m% e: R4 ?* ]
4 H F6 l9 X/ }' q
: o' V- N" j, M- P- Z5 }6 [
7 y& |( P$ ~! s/ e# I. a2 ~! h! Q$ g' b% ^$ `/ }. O1 r
t = 1:length(x);! q8 i3 s9 a5 A ^) E, W/ t
% P8 {; h! C8 m) x# } k" o- D' d+ s ~
- ( B% d/ J' b, l5 Y& S
8 k3 |" A/ j. @5 M6 fplot(t,x,'--',t,y,'-')* F5 _7 B. k8 ?' T
. I; G3 G: [& }; z H1 F: e6 x
* Z# P- I; ?$ `/ T- V; E
( _9 y9 k, R1 U3 [% I8 D/ llegend('Original Data','Filtered Data'), A8 @+ N M/ Q. F
8 P: L% N* C0 h) g6 B( I( D' @
" ?) O$ I6 ~# G* U7 [4 U' Q0 T$ j1 E! t/ W$ Q/ Z, t
0 H* L3 ]+ q+ L) J
5 {! m( {: O$ E* n+ j4 U
, {( y" U; n9 c
Modify Amplitude of Data5 F8 p/ I& Y0 n; \0 V% z
This example shows how to modify the amplitude of a vector of data by applying a transfer function.
% G* h' o6 _4 \$ E$ JIn digital signal processing, filters are often represented by a transfer function. The Z-transform of the difference equation 此示例显示如何通过应用传递函数来修改数据矢量的幅度。
9 Y6 r) B' B$ r7 Q在数字信号处理中,滤波器通常由传递函数表示。 差分方程的Z变换
& O* Z# q% J# E' F5 L d
, E7 Z: y0 i! ~& s$ R
is the following transfer function.
Use the transfer function
to modify the amplitude of the data in count.dat.
) J B0 x. O( l, q# Z& \. S7 i" u' z* V9 V' s8 ?
clc
& _1 E) l3 Y$ K1 [/ y. p/ h) W
0 t9 L9 o1 j; M2 P4 p+ g0 X/ e- 9 Z; R7 w% T% x+ [$ X" \! e( Y
, X$ K+ u2 B% P( M9 ~8 ~+ [! `% k
clear& z% `1 H9 u' X% j9 g8 a
1 Y: n) v5 Q8 H) t
2 y) O* l& c# W/ ?7 l1 p- i
# m- o% V0 b3 gclose all( K: z" J# ~0 u5 s/ J
; Y( i- r# a0 n
/ D8 F w( r0 e) U
: e/ X9 |/ @) K% |6 H; f
! o6 a/ S: D* T c) {0 v9 Y
, v0 b# a5 }$ @) M
) g+ E2 B5 q- O# v. r3 r9 G/ U7 Q( C0 O4 C$ x$ N: S' b$ ~9 t
% Load the data and assign the first column to the vector x.1 J8 a- |$ h7 K
~" h! S- {2 h7 H4 Q7 q# f1 q% c* ], j
9 B5 c" X! x8 B+ w) V" }, t6 k' F
load count.dat/ j6 J' v h4 {
! h9 f; ]! k- ]( l* O( i2 t
% p4 i; f3 ~$ r: {
1 ~ R* x; r; d; j g( |& g; Wx = count(:,1);
$ H0 S: t/ `$ [# W7 E" s( j3 d7 a3 E" E! q+ H1 \7 G; z
% [' k5 n6 @, _3 z7 i. t: `+ s' D- ~+ `2 t. `9 ^
T: K& y/ a+ E! W* |6 p2 m
. G# v& ?7 n8 Y8 {( C7 \/ z- \+ x% l
" @- V$ n9 u3 ~" i# @& F, z" k/ t
4 c2 X; I$ t2 T. t% Create the filter coefficient vectors according to the transfer function .- Q/ J$ ]8 ~ @' J @0 {$ u& b
: F% N# R# ~5 k4 F6 S' _
! u) I' d8 _3 s5 A, b2 M$ r- Z4 x( c8 K+ }
a = [1 0.2];
6 Z0 w9 C. W; l4 w, n
7 C' a7 w; s8 w" m& w2 [6 k- / x% D3 O/ @+ \# \9 w7 Y
( s. A2 B( S$ v* N* y7 o9 Z
b = [2 3];
" I# f1 _+ V$ @# V1 {
% z3 n+ u' S2 p2 K) S9 z0 i* Z5 r - + E* ?# Q3 G- T7 e6 t! G% a+ V
6 m" r: G4 f5 ~1 X$ f1 b" A
9 `% a* `4 H3 V
/ W) C& C- h1 E
: K# H: R$ x! `, n1 T5 S+ U: g+ Q8 [2 Q+ r
% Compute the filtered data, and plot both the original data and the filtered data. This filter primarily modifies the amplitude of the original data.: h& G$ }( X. k$ H9 Y; F4 _
/ M) l/ I: O, M+ t- 8 ]! |2 v& G# g/ a V6 {
- g% p, _& C; ?2 d
y = filter(b,a,x);: T% l; K" W, v. W' s
* e+ Q; _$ U4 s; I/ T - % ?: C+ \6 ]- ?# Z, `
' s2 e! U3 M: G/ x: ~# U0 H; S
+ J9 h s/ z) h9 ^
* Q/ _6 l# Q# l. r* G' j2 e
6 u+ z1 {( K) z8 h. y: v8 ~5 A o( d0 |6 Q
t = 1:length(x); i1 y& S8 A! R7 b! e
& o' Z6 s9 W1 y+ G
- e. n3 b+ s* r' ~! w$ j
d: t- {, z6 z7 A) `plot(t,x,'--',t,y,'-')
+ \9 r: }/ q1 d4 w
9 { y% a% y& w* U' W1 E- % k; r/ F" m7 [6 J
# V* t) _* }. g9 C9 J* m
legend('Original Data','Filtered Data'): o* K1 l- X+ K! B/ p# ^% J2 f4 y
! |6 t& C0 i4 b7 s) O: b; t
' A. g9 a+ O3 E# i$ m6 c( `4 Z7 y- v- m
$ D% s! C) C! H# \$ Y9 r& i4 E G+ v
# A' A+ v7 t; j1 j+ J0 X' G1 k k; M+ D7 I% N! w6 B
9 T5 u4 C: p" i6 G& z
" d3 v1 F( c) |
$ r/ P3 h! R- F" c; a |