EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
Filter DataFilter Difference Equation(滤波器差分方程)滤波器是一种数据处理技术,可以消除数据中的高频波动或从数据中去除特定频率的周期性趋势。 在MATLAB®中,滤波器功能根据以下差分方程过滤数据x的向量,该差分方程描述了抽头延迟线滤波器。
) S* b+ O* _. \# Z1 q
* T/ L" o7 w) m p+ [9 r/ Y: E; ?
在该等式中,a和b是滤波器系数的矢量,Na是反馈滤波器阶数,Nb是前馈滤波器阶数。 n是x的当前元素的索引。 输出y(n)是x和y的当前元素和先前元素的线性组合。 滤波函数使用指定的系数向量a和b来过滤输入数据x。
Moving-Average Filter of Traffic Data3 E! u7 z! ~3 \0 J; J
滤波器功能是实现移动平均滤波器的一种方法,这是一种常见的数据平滑技术。8 V9 G7 z- K7 u2 t; y
The following difference equation describes a filter that averages time-dependent data with respect to the current hour and the three previous hours of data. (以下差分方程描述了一个过滤器,它根据当前小时和前三个小时的数据平均时间相关数据。)
导入描述流量随时间变化的数据,并将第一列车辆计数分配给向量x。 - / h4 \* L5 R E% O( m
1 E, T# h; C# {' V3 P! Sclc2 o4 o! ^ q1 H" J6 Y4 F
/ F# F/ k% Z" B% f5 Y: F - & m6 J/ p! n% N( H! i0 s1 b
1 a, m9 Y: A7 c7 R, S' g5 _( R
clear4 v$ E' y1 i2 r$ a
- p( c' T# ^) n
3 h. \: }* |* L
7 b4 |( |' n N' Gclose all
y5 S E0 g) t1 x. L
7 m5 N' f9 ?2 Y& z' a) L. z y$ U
8 D# t0 m6 ]/ I0 ^' x& k- v" c
* u- q- V) u8 p, V' z: ^
/ h% j2 M5 V* ^0 Q' e- c% s+ j/ D% P
- ( ]. Z5 k& J+ z0 r6 z2 ?
i% r) S% a. M0 y2 l% Import data that describes traffic flow over time, and assign the first column of vehicle counts to the vector x.
; N0 G) ~2 f) |7 I1 k
9 j& L9 L6 ?' |% z
1 ^6 v @. N, [: f2 g3 o1 O3 }, p' Z& T4 [9 Y
load count.dat
5 M# c# ^+ r, }7 k* r/ K7 a
& N# ~4 G* @; C P
# Y6 W9 s+ u; i- R3 l, k1 @0 X, P( X8 z
x = count(:,1);
3 z( }; ?' l/ d; v
% u5 Q' o; w, s! _- 6 ~; ?4 d6 B. T5 u2 H
7 F) G2 g, I' J3 U$ g( Q
- S+ }8 P$ P1 {/ L; y, s; m
0 _- O- P* r8 X, K2 T/ _7 E0 ?! e0 }
% g) X: `6 W' W. X- x4 h3 ]8 A3 o7 t6 [. `% _- i, j
% Create the filter coefficient vectors.
: K, m4 l: K4 C. G
3 t( x; K6 r ^2 S: M. ^9 B* i5 e7 u- # j2 V8 D) g+ j( l* T- ?1 ~1 t
* p ~9 G" m; P+ L
a = 1;
5 g0 W" M+ {+ ?- d: s H) v* h
5 d6 C7 F r( ]6 W! u( F1 @" N
: w3 N" E9 x0 R6 j
+ U: b5 }: Q# W# S! c) P- V. J# ib = [1/4 1/4 1/4 1/4];" c( M1 O3 n( z
* y# K6 M/ v( `2 ?+ Z- / J8 o$ B( z, L7 M o* h* B
/ ~! w/ B9 s! K: O w2 J8 l
& {7 u$ }& `. ]/ i
2 Q& U: @( j+ F! Z2 v - 8 ]) b: S+ ]1 i; o6 ?7 P U8 ~
! X+ _* s6 R8 T) O9 C2 F* e
% Compute the 4-hour moving average of the data, and plot both the original data and the filtered data.& z) V9 i2 @8 t* ? R0 r
$ L3 ]6 `) b+ L1 P. n- p1 V/ m. w
* ~) }* H- E! H+ A6 e2 s) P. R9 N. H
2 a. o8 S/ y3 s- o7 G O9 Oy = filter(b,a,x);% D1 ^3 h9 ]; Z1 [8 l
& T9 J# S2 Z% e. p2 a
" b1 B6 V7 {2 a4 ?
. m( Z# N- E5 G/ V9 w$ r0 X' l4 e6 |0 [0 ^6 b+ |
% I# `# G- G4 _9 Z/ S# g( `. v
- 9 G5 i# }' N( N c5 A/ v0 G: z
0 A' J" M! g6 P2 T7 l$ }2 I/ n
t = 1:length(x);( z1 k7 Y- ]0 w, N) d: }9 v# O
* Y, h n; [ p+ C
- , V: z) x, z4 A- J$ o* z
% e7 ?; n% ~2 [" j+ |, `( hplot(t,x,'--',t,y,'-')8 J2 y+ b, B7 J7 o4 e
8 ~" j4 u* z7 L9 x1 m
# ~# t' D- u' }% k" ~ l
1 G5 O$ e( n( H& }7 llegend('Original Data','Filtered Data')
- r/ g/ i2 m9 I2 A3 T, y: X( J! h! B; @8 h. X
: X- a& ^: Y3 [" c7 f5 T7 Q0 a6 i% I, \4 Q+ v& |; p& X5 r. Y
7 C7 O+ @! C7 D: u, R& S9 Z) p- e3 G* x
) g1 X; q- }8 d
Modify Amplitude of Data( y: G' I ]+ ]+ T
This example shows how to modify the amplitude of a vector of data by applying a transfer function.
# g* c. Q* o* X0 {# B8 f' aIn digital signal processing, filters are often represented by a transfer function. The Z-transform of the difference equation 此示例显示如何通过应用传递函数来修改数据矢量的幅度。
) N* x- K5 u8 F$ C' a在数字信号处理中,滤波器通常由传递函数表示。 差分方程的Z变换 , u' S/ A' l; m; l+ E; c
, m" O/ m: B! q& w5 ~! R2 @. w% Cis the following transfer function.
Use the transfer function
to modify the amplitude of the data in count.dat.
* H6 k0 c5 r9 a! l* H8 Y; E* j5 @4 b. C5 K! v0 B( f
clc: ~1 G1 o u/ ]/ d; u- |
' R. M2 t* y5 s. W* R% k; Q
7 P- n/ Y. d% v! z9 O1 k; ^; l
: V+ P1 |5 E/ a t0 Gclear+ f' F! `- b5 [. w- I
4 G5 \+ z2 O3 b
9 }/ t7 N! ~0 Q8 U F& q4 R9 S5 _& w
" G. J# K+ x5 v1 C7 Cclose all P8 Q) }( m) h
, X9 f6 e4 N& ^6 x
5 u5 ^8 D: R& Q' Y& l1 m! a, h, F9 a; x4 \# X" O& L
$ e Y; H* F; W# y" s
! ~: H8 E7 R- V5 z3 U
2 m0 L. {2 X# u1 Q; t1 P t9 k- J x9 w* v$ R' G# w
% Load the data and assign the first column to the vector x.7 j3 L! D/ g: T C$ b1 P! n( i0 b
: X0 Z) X3 w9 s/ ]$ q* v
- 8 C4 \5 B& s0 x; [) y, e4 C4 _- Y
2 `% l% z/ N; r, G
load count.dat% Y* c$ |: i/ x$ n7 E
4 Q7 m/ W; D7 p+ C/ \5 X
- $ ~$ a* z8 e, I+ H0 P
6 e5 V' p4 ]" n3 T* Y9 t
x = count(:,1);% R$ v% c- v/ D y1 p1 O
+ L- G" L7 R' ~9 _, o8 }
1 u( A3 Y# k. T4 h% m, w: P
9 J/ F$ J, y2 t1 @! L, m( `) q. V( w3 p/ Y
! m1 D9 o$ f$ z& N. s! U+ {
- 1 H5 S8 R F% u# ]
: S- j2 c4 a4 V0 W6 ~4 p% Create the filter coefficient vectors according to the transfer function .; c |0 l/ l6 ^* Z- c. m
; W. v* h, k' a4 u* ^% `: W8 a
- ! } ]1 F1 d3 y# N- D' B
% j! B& ]8 Z" D0 L
a = [1 0.2];7 e) {, l8 c) G# D7 ^
& Z4 e# M! R* Z% }, i" a. x - - t7 P3 H3 C# V( [
' \$ C9 j1 W5 K& `2 J# m v4 [b = [2 3];& B6 E" q- O+ ]) E2 d, m& p
2 ]1 r# L2 B+ x: |
- , F1 r0 @0 T. g0 \6 Z0 v# s
; I$ f1 p8 U9 F# Q( A/ t+ r
d9 {4 |5 a6 T/ G" _2 P
6 p- k" P, h! P5 O - 3 q; J0 @* o4 N6 L) ?1 g
' ?! Z, V: D4 N: S4 Y4 j
% Compute the filtered data, and plot both the original data and the filtered data. This filter primarily modifies the amplitude of the original data.5 X" f# g8 E$ n* {9 J9 a+ Z! z( M
8 k& G$ h. [6 |. l7 T: Z$ m - . k2 }5 ^# }3 @* W( B/ E2 Q; l o) R
% Q: X- r6 H) {" }5 s. J/ ty = filter(b,a,x);
. }# j( W. X# h* f' c1 D8 R- Q: h; q$ X- J$ m
- ' {- H: D1 ^; h) {. t& j: v: b
, q! W; S4 K2 @" W
! Q$ f5 S% ?+ D6 l6 y5 V
# y- v7 [* \9 G6 y+ z
, P- V5 K, z! O$ z
) G/ R( r2 G9 t. Pt = 1:length(x);
3 B6 Q! Z# @# _: l L* V: C7 T- R
+ `- D& p+ @; z( x$ j- . T( \- Q& @+ f
5 O g ^2 a ^, F1 n! a& Aplot(t,x,'--',t,y,'-')- v8 a) F9 q" Q- _
* T6 D: M$ Z6 y2 j9 J" F- c1 Q
- * [+ ~: v, g6 Q5 S: ?- J6 \
3 l* P2 b1 E) a6 z& \. {6 |/ s; ]legend('Original Data','Filtered Data')
+ E& H& f# N5 s: }. A* R9 N1 d, r0 K( g
- 1 p, U6 n J; l& A; U t1 {1 B
3 k: Y; l2 o9 ]; {3 z1 ~' L' Q8 c" H4 b! Y' W& q0 L
: r" r1 L% a; p j# W7 |2 w4 k8 g
3 u5 w1 t* Y7 d" J1 _2 p+ G; q
* H- `% H1 h) W- V ?5 B
( x* U- ~1 Y4 V, W
( x7 }4 J! l3 S% l |