|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
麻烦大神帮忙看一下,PSO在节点定位算法的仿真,运行后只有两个坐标轴怎么办?感谢!0 _. @& s" L% e
8 s6 L: v- ?) K7 i4 |% `5 _" [
function[psoF]=pso_2D
f6 `' Q4 y: m; Eclc;& |0 p6 j6 W4 P3 L$ ~
clear all;
5 z |& J: l5 M& F2 B( apop_size=10;
* [7 _7 H1 M; ]part_size=2;# U, K5 A9 j$ g0 a
gbest=zeros(1,part_size+1);
! u8 M2 C1 z) V6 [1 c5 rmax_gen=300;0 y8 \" p7 Z" ^
region=zeros(part_size,2);4 x& i/ Q N# v, ?7 R2 {
region=10*[-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;-3,3;];0 ^' u2 [) `( j% f' p0 c. \
rand('state',sum(100*clock));
w2 H# g \" x1 ^4 Rarr_present=ini_pos(pop_size,part_size);
9 A# z3 T, a W# ]0 F* U/ ?v=ini_v(pop_size,part_size);
7 p2 O* m; T: zpbest=zeros(pop_size,part_size+1);
2 C& c% I/ H2 F/ S8 ?best_record=zeros(part_size+1,max_gen);2 }+ D: t. R1 f. Q1 d
w_max=0.9;9 ?& A7 o1 [* _1 F4 s: U, o, p2 c/ @
w_min=0.2;( H5 [9 O, ?+ G( F, S5 F; l
v_max=3;5 P2 G9 E. }6 j+ o/ W7 R8 W/ J8 b% D
c1=2;1 a* B+ U% i: j' b T& [ r
c2=2;' q0 a8 p( N0 J7 I7 ?
arr_present(:,end)=ini_fit(arr_present,pop_size,part_size);
) M5 `& R$ q2 \# V0 j, ^pbest=arr_present;
# p) d' u x0 Q! Z/ \[best_value best_index]=max(arr_present(end));6 Z5 c! o8 V5 \3 I" u" G+ ?
gbest=arr_present(best_index, ;/ Z- n* r% h4 I/ [
for i=1:max_gen
; j! e) m& ?$ ^4 {+ S4 G w=w_max-(w_max-w_min)*i/max_gen;
6 F& |' h; E8 a for j=1:pop_size" I$ ~0 `3 J0 t6 B7 C% u* u+ y
v(j, =w.*v(j)+c1.*rand.*(pbest(j,1:part_size)-arr_present(j,1:part_size));
8 |: S6 }9 {% d) u! `; \; c c2.*rand.*(gbest(1:part_size)-arr_present(j,1:part_size));
U! x/ K5 ^. k for k=1:part_size
9 K: C( Y) }/ q* d% ^ if abs(v(j,k))>20
- F3 V7 v8 ?1 C8 K& J" p4 `2 r rand('state',sum(100*clock));$ h0 i! V4 b, F: J3 Y$ h. A6 |" h
v(j,k)=20*rand();: J# A9 e* W L' a1 J/ p
end
8 d( n. _1 ^# ~$ B! C1 d7 J end$ [" E( q# O+ c. a% m: s
arr_present(j,1:part_size)=arr_present(j,1:part_size)+v(j,1:part_size);% k9 H9 }6 E5 y1 p1 s
arr_present(j,end)=fitness(part_size,arr_present(j,1:part_size));
8 Y+ j7 V4 b& n# [8 U0 D if(arr_present(j,end)>pbest(j,end))&(Region_in(arr_present(j, ,region))
6 M$ a+ o$ A' O' X+ b5 H0 U9 p pbest(j)=arr_present(j); ^% K# Y, u, [' b! l+ w. x/ ?* n
end
2 J, I N" h- p. ~; C: q1 j end
6 E- _ r6 C- B5 L [best best_index]=max(arr_present(end)); M3 T. I( E0 e* M% A4 h
if best>gbest(end)&&(Region_in(arr_present(best_index),region))
) t0 m4 n) q# {* I7 | gbest=arr_present(best_index,:);- K* l G e% g! O
end
/ l/ L4 @8 t$ | xlhd=gbest(1:part_size);
% N' [1 G; h$ O; S2 Y- \+ x# F if(1)- F. g% F5 j0 a
for p=1:25$ X( @2 C: H0 c% r% g
cxl=rand(1,part_size);
5 ]: ?1 U+ U% \. d) `" i2 R$ o0 H$ x for j=1:part_size
7 i9 Y( n% h* t3 O% t2 p9 _ if cxl(j)==0
; Q5 K. _2 O- T$ a5 d cxl(j)=0.1;
; _! A9 B I4 r8 w( c6 d end. w' R- o$ M( F1 Q5 q# x
if cxl(j)==0.25
: @0 I5 s6 h, n* T$ k- f5 P1 I cxl(j)=0.26;
; w" e' k: a1 k end
6 t5 s/ I0 l3 \2 R# }' g if cxl(j)==0.5& k* N0 `2 d; ]. Z, h
cxl(j)=0.51;/ U9 o. F' s" i' |
end; s! U4 c7 `5 w5 `( Y2 H8 ]
if cxl(j)==0.75
( n4 o& u0 U# l: p cxl(j)=0.76;2 m, P, u* K! c! _% P+ S9 ~
end/ C( X$ x& O2 B, T$ r$ s% e6 ]
if cxl(j)==13 }- `8 E/ j+ r9 m2 D3 z6 w1 b
cxl=0.9;) y6 V; _ G$ E% t2 W$ z+ Q- C' W
end) T9 M; ]0 R/ C5 f3 }* |7 Q( b5 t
end
7 u- @$ I4 Z7 O4 H al=-30;bl=30;
. y$ P# ^: b; g* ^1 N0 L rxl=al+(bl-al)*cxl;
# V: g/ t" X" U& ^( K4 p: d bate=0.1;
- c5 R- K' ]4 \ xlhd=xlhd+bate*rxl;( `9 ] k' }! w3 B
if fitness(part_size,xlhd)>gbest(end)
4 P0 b, C. ?# G _! f4 Z0 R- p" K4 S gbest(1:part_size)=xlhd;: J! m: R7 d8 ^2 n# {& Z
gbest(end)=fitness(part_size,xlhd);! T7 R. g/ ~1 T, f, u4 a4 w
end
1 q1 X7 h# E) l/ ` for j=1:part_size- ~6 j: O. J6 m+ D3 g
cxl(j)=4*cxl(j)*(1-cxl(j));/ }6 _: M* ^7 T! r! E
end
" O% C8 m; e: c* J$ S2 [$ ^& x end5 ~7 I+ i' h. _
end;# R0 V/ ~4 K2 f5 J. r) G: X
! R. M3 O4 }5 R0 h4 {: ` best_record(i)=gbest(end);+ X6 V3 d% ^3 B3 h; \
end;) x& `) v$ N- Q& W: l+ L6 Z
pso=gbest;# d+ I" B! g$ m1 Z3 L
display(gbest); Y, ]( ?* U1 {1 X" @# \3 Z6 ]: R/ M
figure;/ Y% @: j' F2 T' ^* J
plot(best_record(end));8 I% r. V' `* p5 Y9 h9 P
best=zeros(part_size,max_gen);4 Q5 b5 I9 T: b* G9 {
for i=1part_size=1;. } }( Q7 t1 P5 T" H
best(i)=best_record(i);
. @) I3 q# |0 c. _ u- Gend
A' e3 U) W. \ ]$ @- }. fpareto1=zeros(1,max_gen);. h0 t6 f* c1 F! r2 r
pareto2=zeros(1,max_gen);) d4 t+ d" i- H" W# F9 e
for i=1:max_gen+ i) ^& ]4 |- }- I
pareto1(i)=f1(part_size,best(i));
. y% K2 ]" p3 u0 R7 E# V8 O% W pareto2(i)=f2(part_size,best(i));
- J9 r7 w, H" nend
. P5 @) _. F- c* y" e2 }8 \" Zfigure;' V, ~: K( q7 y- { L, f- D) L
i=1:max_gen;
2 f2 G' w7 u6 B, Hplot(pareto1(i),pareto2(i),'r+');( l3 ]2 W1 ]! X: ?! G1 \0 i" X
xlabel('f1');ylabel('f2');8 B+ Z4 r1 r0 a+ A# ]: ]2 s( }
title('Pareto曲线');
! z& j( _; s s; W0 R" }) q& c" _6 Ifunction ini_present=ini_pos(pop_size,part_size)1 x. h2 b7 |% ?4 P! X
ini_present=10*3*rand(pop_size,part_size+1);' l) ^8 X5 w. |6 z
function ini_velocity=ini_v(pop_size,part_size)7 s8 N0 K4 i( i
ini_velocity=20*(rand(pop_size,part_size));
* _/ {6 i4 @) ~4 Qfunction flag=Region_in(pos_present,region)
4 k4 y1 m. H' ]7 N1 I[m n]=size(pos_present);! _* D. d; D" W
flag=1;
6 j$ V+ X( T4 A5 s, Zfor j=1:n-15 n8 N) O* q9 {9 _
flag=flag&(pos_present(1,j)>=region(j,1))&(pos_present(1,j)<=region(j,2));1 G; |1 n; ] t+ _5 i4 k
end
; g' ~% M9 k5 e X: Ffunction arr_fitness=ini_fit(pos_present,pop_size,part_size)
; n# v' u: p7 i8 c9 R' X1 R* p( f* Ufor k=1:pop_size
% }' [4 n; x0 B9 p# s6 ^5 Y( | arr_fitness(k,1)=fitness(part_size,pos_present(k,1:part_size));
& a; x% C4 z- L7 b% r! r5 Pend0 w s3 S8 K0 X" [% j+ L& ~
function fit=fitness(n,xp)+ Y n( q* Y- C* G. o8 m
y0=[-9.9907,-7.7507];9 b! s; ]2 E& S$ d' v
y1=[f1(n,xp),f2(n,xp)];
; A- f7 q5 r0 g% s) G- o$ w u1 sfit=graydegree(2,y0,y1);
7 R. X4 `( c6 R3 Q5 wfunction r=f1(n,x), f9 {4 ~ ]; B! c$ T$ A9 r
r=0;6 b' F7 z" V3 h
for i=1:n-1
8 K; B8 e- ?3 g4 Q r=r+(-10)*exp((-0.2)*sqrt(x(i)^2+x(i+1)^2));0 [8 ]$ k M+ w0 x- J
end
) S O( z0 X V/ ^8 y* s$ ifunction r=f2(n,x)
5 q x2 H r9 I. c9 X: _: z+ Yr=0;: ]9 d: m0 Q4 I: v5 f; X: b
for i=1:n
) D( x0 g1 w0 H7 b9 m1 v9 j r=r+(abs(x(i)))^0.8+5*sin(x(i)^3);
4 E& v& b8 d2 E- ?4 j+ Send
8 [, q& P3 r" g6 [6 Ffunction r=g1(n,x)
! n. W) |1 [3 S; K* i3 U1 X4 C8 @r=0;
/ h* W1 ]+ F1 I( R- dfor i=1:n
% Y3 V2 t6 ~, T; `1 _ r=0;5 M" \8 B- ~, r, ~# I
end
% {' d* l. z1 U1 R* bfunction r=g2(n,x)
. ~" [+ t f2 p8 L. yr=0;
+ v0 w8 `* V7 U$ ~- Cfor i=1:n. Z" h D7 _# N2 f
r=0;
: O# W) L2 B5 p2 Mend; G0 k ^: R0 w9 x7 v7 ^
function gama=graydegree(tn,y0,y1)* B9 h/ O# K6 w/ D# G! u+ M: y
gama=0;6 Q5 r r: u) V; V
rou=0.5;
; Q# q8 L1 V8 }: H* ?8 [% Fkesa=zeros(tn,1);5 B& B9 I& Z+ _0 M8 S* q9 X
m1=abs(y0(1)-y1(1));; _" x! r) [# g0 m* ?
m2=abs(y0(1)-y1(1)); \/ r+ G. e9 b: p8 ?8 ~" W$ R
for i=1:tn! `) d/ t/ z7 E r
if(abs(y0(i)-y1(i))>m2)
, l8 j; N/ S+ @& @4 V+ @ m2=abs(y0(i)-y1(i));( W; Q3 `2 U7 t0 j: a
end
! C: B9 q3 H v, t; ^end' K8 L! T% P/ V
for i=1:tn' _0 O; W' l2 L( H2 Z5 J
kesa(i)=(m1+rou*m2)/(abs(y0(i)-y1(i))+rou*m2);
/ [; [! j f { gama=gama+kesa(i);
6 z+ W" l- C5 eend
2 @4 N0 }% X7 ?- o5 igama=gama/tn;$ q' N0 @. X' p3 w9 W+ c
function bool=feasible(x,n)* f7 M9 |% z2 ^5 R
r=0;* [1 ?. f, T2 o; E& _2 T
r=max(g1(n,x),g2(n,x));0 T, I. P4 u4 g% M0 }1 X+ V
if(r>0)
L( e! E8 Q0 ?% o. Q bool=0;
7 N0 P: Z: Q1 w: H' H Q; I) gelse0 t' X! P% z& g* t* }. H
bool=1;/ R5 y* o# l* @/ p) ?0 j+ k4 T
end |
|