找回密码
 注册
关于网站域名变更的通知
查看: 669|回复: 1
打印 上一主题 下一主题

MATLAB之conv 函数介绍(卷积和多项式乘法)

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2020-5-25 09:37 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
conv
4 {1 ~8 y; i1 F; D' G% DConvolution and polynomial multiplication5 o3 d' O2 k7 ]5 q

: m* s" I1 h2 [1 c" f- n6 RSyntax% j- ]: `- G+ V+ P
w = conv(u,v)
- f4 B5 `6 u, `2 C, K$ |
  b* z' d+ i. S- L8 Cw = conv(u,v,shape); z1 S$ @- K* k( e, K9 ~

( Y3 c- h8 [5 B4 p/ l- k6 U+ MDescription
; _- @# |1 g' G( [- Nw = conv(u,v)返回向量u和v的卷积。如果u和v是多项式系数的向量,则对它们进行卷积相当于将两个多项式相乘。
0 m, ^# [  O" p. b1 L9 P
  F, ]5 B- |/ C2 u3 z3 t7 @# y9 Q0 ^" Q' P; _# s0 x3 b

+ R  N1 t7 v) ?/ K: ^1 Fw = conv(u,v,shape) returns a subsection of the convolution, as specified by shape. For example, conv(u,v,'same') returns only the central part of the convolution, the same size as u, and conv(u,v,'valid') returns only the part of the convolution computed without the zero-padded edges.
; I/ \! a' X; j& F) ]( C* V0 W( F# Z4 i$ s4 G7 [$ _
w = conv(u,v,shape)返回卷积的子部分,由形状指定。, [9 O, g+ X' V2 p: o' F4 P
例如,conv(u,v,'same')仅返回卷积的中心部分,与u的大小相同,而conv(u,v,'valid')仅返回计算后的卷积部分而没有零填充边。
- _4 i" ?; d/ U8 H1 t4 K+ B
/ k  U0 Z* P$ B5 Q5 u3 ~Polynomial Multiplication via Convolution" L1 }- {; j7 L8 x7 n' V% Z
5 x( m1 T' S& L7 T1 L* ~& B

9 q5 |( R5 b) y4 FCreate vectors u and v containing the coefficients of the polynomials x^2 + 1 and 2x + 7.
0 c! S5 m$ s5 k- X: m8 w) O6 M3 |3 A, v9 c2 Z5 z+ I$ Q( p5 j
u = [1 0 1];; F; j) C- O( w" w0 o# J4 y7 s+ D
v = [2 7];
  c! h; d' G' P( y9 v' S3 |8 T1 s: RUse convolution to multiply the polynomials.
, u# i% B0 U8 U; r  T+ I
: I, H( @0 T3 n. P4 }. Iw = conv(u,v)( |+ o* m6 C  s& i: U) G: k3 o
w = 1×4
1 ]# V# u" g4 J! m5 \) D8 x4 j3 q; l. E' ]
     2     7     2     7
* C9 U3 D% u4 b6 c5 x
3 {2 h% a! C% C7 z5 M- i. vw contains the polynomial coefficients for  2x^3 + 7x^2 + 2x + 7.# F  S" o: @$ S- e2 b

0 \+ v' ^  a, i1 LVector Convolution! I6 b2 _$ E% J2 a/ K
Create two vectors and convolve them.
* s& o4 H: |7 V' e' x# f# n5 _; v; V) k( K
u = [1 1 1];$ A/ p# N* F/ P" R" A
v = [1 1 0 0 0 1 1];
; C2 ^+ x# I5 u. W3 Iw = conv(u,v)7 [/ }  @9 {# ^- m1 c' A: _
w = 1×9
) L1 N) A* D% y4 M8 k$ U# Z$ w, o& `4 K; D+ s+ g! p1 U
     1     2     2     1     0     1     2     2     10 f. b% _  u5 Y3 p; D* R/ ^8 k
& Q, O$ m1 t+ L/ k. N
The length of w is length(u)+length(v)-1, which in this example is 9.% b. L7 i8 [& E
4 E8 Y# ~5 j  ?6 L) z% d* \
Central Part of Convolution
& T: e! Y( q  @7 P  D9 {* L; t* K/ `6 xCreate two vectors. Find the central part of the convolution of u and v that is the same size as u.. ?+ {1 N, P5 u4 V

0 z% k# y/ {3 o$ qu = [-1 2 3 -2 0 1 2];$ i; h- W; J0 W* O" _5 W
v = [2 4 -1 1];! \$ K: r2 P& c8 o# X6 G
w = conv(u,v,'same')6 Q0 o4 N3 |8 S/ f9 A3 [6 D
w = 1×75 o* }+ o/ K  W" y5 n2 E+ Y8 y

; C' K% D1 B: ?0 ~, |( C( B    15     5    -9     7     6     7    -1
7 f- G, Y; U$ v( S- ?7 F* q& `0 E: [  r
w has a length of 7. The full convolution would be of length length(u)+length(v)-1, which in this example would be 10., f3 |% {" w. c$ N& v8 Y/ g0 u) D
+ V  D% K, P5 ^5 u

$ J! H& n% M4 q5 t
8 S* u1 @1 a9 k  h
" |6 p2 f1 ~6 v% D& Q) S! O% G+ ^, ]! d+ |) E; e
  • TA的每日心情

    2019-11-29 15:37
  • 签到天数: 1 天

    [LV.1]初来乍到

    2#
    发表于 2020-5-25 10:57 | 只看该作者
    卷积和多项式乘法
    您需要登录后才可以回帖 登录 | 注册

    本版积分规则

    关闭

    推荐内容上一条 /1 下一条

    EDA365公众号

    关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

    GMT+8, 2025-6-23 08:19 , Processed in 0.078125 second(s), 26 queries , Gzip On.

    深圳市墨知创新科技有限公司

    地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

    快速回复 返回顶部 返回列表