|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
曲率公式:, P5 ]% j5 Z$ n& m% F5 { I
& z6 i* _' c/ c$ h& e8 t1 P注意:
- p8 r8 I* P7 e* E# }①曲率半径为曲率的倒数
1 v, l7 ^& Z- m& V②如果是离散点,先用polyfit和polyval拟合出曲线
& O7 e( q9 b8 k. v5 I2 y0 K$ E3 Q( v2 R: ]$ B. ^+ s( M
程序:; j x; k8 q+ o3 M$ {% x/ R
2 m7 m5 C3 s# L, N6 H: z" N 5 v: Q7 x& |0 e0 ]6 F+ t
clc; clear all; close all;; a9 _* ]3 S- O8 K8 g
x0 = linspace(0, 1);/ N+ e s B; v6 K) I
y0 = sin(x0).*cos(x0);2 F" h+ o! M- A/ u; ~8 {4 H3 ~
h = abs(diff([x0(2), x0(1)]));9 Q N0 q+ L: s$ t; X
% 模拟一阶导* z7 Q0 m e: V8 x+ e
figure; box on; hold on;
1 X% [& M( w/ o! vythe1 = cos(x0).^2 - sin(x0).^2; %理论一阶导2 b$ ~% p5 C. S' I5 K
yapp1 = gradient(y0, h); %matlab数值近似
- z/ H8 j e/ zplot(x0, ythe1, '.');
+ h$ ]. C4 J d' P& lplot(x0, yapp1, 'r');* Y/ x$ u$ d! v# ]! [4 |/ b' @
legend('理论值', '模拟值');4 \1 T4 I" ?6 I' A
title('模拟一阶导');
' R# `0 r- m( ~1 M) k- `; \% W% 模拟二阶导& g6 q, z0 [* }0 }" c% \- G% z0 Y
figure; box on; hold on;
! S) D* |% F9 u# p3 {; ^, k }ythe2 = (-4)*cos(x0).*sin(x0); %理论二阶导
0 Y8 G2 B% e1 {: F& y$ a7 zyapp2 = 2*2*del2(y0, h); %matlab数值近似
, ?9 I2 N F! B" v) u3 mplot(x0, ythe2,'.');
9 V0 M9 R; X6 }. Kplot(x0, yapp2,'r');
# X, R$ h8 I7 [5 [# m5 T, ?0 Mlegend('理论值', '模拟值');
, V5 I9 d: d- R, ntitle('模拟二阶导');# P2 \" o" N9 r- @- P& D) h, }
% 模拟曲率
' [6 p+ V8 p. Psyms x y
2 e3 L! }, T" U: gy = sin(x)*cos(x);
0 n3 x# f5 |$ U5 V5 z) G4 Q1 W. Kyd2 = diff(y, 2);
* b( a8 _5 |' \, E) l2 [) myd1 = diff(y, 1);
# W, m! J- P9 s- `0 zk = abs(yd2)/(1+yd1^2)^(3/2);
) \: {5 ~1 x/ b0 `& jk1 = subs(k, x, x0);
6 ^2 F4 o0 ]( W& p: wk2 = abs(yapp2)./(1+yapp1.^2).^(3/2);
* B. z, q/ f, _; c. ]figure; box on; hold on;
2 g( e1 A. j7 }) g! Cplot(x0, k1, '.');
( H" b* T. B/ |/ {$ tplot(x0, k2, 'r');
" v J. C1 n# J$ H8 Z% Vlegend('理论值', '模拟值', 'Location', 'NorthWest'); _ N7 f1 ?5 F: t4 T. H/ @
title('模拟曲率');( w3 T5 R, Y6 m
/ e9 t. {$ v6 h8 n7 F% z/ u+ w$ ]9 D1 s! k
9 r$ b$ _+ a5 ~. g, Y W, b
! V A' q% i4 x
" v. L' H5 S9 I7 w) k# m6 S. P
3 @7 c$ Z( N! t: u; ?, a/ X
1 k1 [7 d* f8 K8 W
- j& o5 k6 ?, G+ p
2 Z7 H: U% x5 h% `! U |
|