找回密码
 注册
关于网站域名变更的通知
查看: 496|回复: 3
打印 上一主题 下一主题

一看就懂--STM32的GPIO工作原理(有图有真相)

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2020-1-20 11:31 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
8 O# X' U$ @% Z' j7 h* a; W
STM32引脚说明
GPIO是通用输入/输出端口的简称,是STM32可控制的引脚。GPIO的引脚与外部硬件设备连接,可实现与外部通讯、控制外部硬件或者采集外部硬件数据的功能。

' ~# Y% d1 T, Y8 Y
STM32F103ZET6芯片为144脚芯片,包括7个通用目的的输入/输出口(GPIO)组,分别为GPIOA、GPIOB、GPIOC、GPIOD、GPIOE、GPIOF、GPIOG,同时每组GPIO口组有16个GPIO口。通常简略称为PAx、PBx、PCx、PDx、PEx、PFx、PGx,其中x为0-15。
3 X" q. ]! z# L' y2 N
STM32的大部分引脚除了当GPIO使用之外,还可以复用位外设功能引脚(比如串口),这部分在【STM32】STM32端口复用和重映射(AFIO辅助功能时钟) 中有详细的介绍。

: g& ^- h" u9 @( |3 Q

! v6 I: N, w& I, y- U' I- A/ ]
每个GPIO内部都有这样的一个电路结构,这个结构在本文下面会具体介绍。
$ J$ h1 @7 T" e3 k, I

8 l8 T" f# P$ s+ @: C9 c
这边的电路图稍微提一下:

' @3 x* G7 c, T, ~/ z- {; U
保护二极管:IO引脚上下两边两个二极管用于防止引脚外部过高、过低的电压输入。当引脚电压高于VDD时,上方的二极管导通;当引脚电压低于VSS时,下方的二极管导通,防止不正常电压引入芯片导致芯片烧毁。但是尽管如此,还是不能直接外接大功率器件,须加大功率及隔离电路驱动,防止烧坏芯片或者外接器件无法正常工作。
' p8 g* z( q, h5 X/ i
P-MOS管和N-MOS管:由P-MOS管和N-MOS管组成的单元电路使得GPIO具有“推挽输出”和“开漏输出”的模式。这里的电路会在下面很详细地分析到。
3 ~/ ^- R. o  J5 [. }! J9 O
TTL肖特基触发器:信号经过触发器后,模拟信号转化为0和1的数字信号。但是,当GPIO引脚作为ADC采集电压的输入通道时,用其“模拟输入”功能,此时信号不再经过触发器进行TTL电平转换。ADC外设要采集到的原始的模拟信号。

& z; |2 j% |# s* B
这里需要注意的是,在查看《STM32中文参考手册V10》中的GPIO的表格时,会看到有“FT”一列,这代表着这个GPIO口时兼容3.3V和5V的;如果没有标注“FT”,就代表着不兼容5V。
GPIO支持4种输入模式(浮空输入、上拉输入、下拉输入、模拟输入)和4种输出模式(开漏输出、开漏复用输出、推挽输出、推挽复用输出)。同时,GPIO还支持三种最大翻转速度(2MHz、10MHz、50MHz)。
* M; N+ w) Y) Q2 C+ E0 `; [& o; `2 B
每个I/O口可以自由编程,但I/O口寄存器必须按32位字被访问。

0 i: s7 R7 S, M( I! d& T
GPIO_Mode_AIN 模拟输入
GPIO_Mode_IN_FLOATING 浮空输入
GPIO_Mode_IPD 下拉输入
GPIO_Mode_IPU 上拉输入
GPIO_Mode_Out_OD 开漏输出
GPIO_Mode_Out_PP 推挽输出
GPIO_Mode_AF_OD 复用开漏输出
GPIO_Mode_AF_PP 复用推挽输出
下面将具体介绍GPIO的这八种工作方式:
7 k6 X7 I& K! T, ]; j  j
浮空输入模式

3 ?$ P4 C" q0 f2 N8 N1 k) |
9 c% k  P' ~5 S4 t* x8 X# Y
浮空输入模式下,I/O端口的电平信号直接进入输入数据寄存器。也就是说,I/O的电平状态是不确定的,完全由外部输入决定;如果在该引脚悬空(在无信号输入)的情况下,读取该端口的电平是不确定的。
6 m2 ~9 t% B: Y. U% b- \4 j

! e2 @! ]' c  p3 |# ~
上拉输入模式
" J2 l' P$ g. m' w/ }: G. H1 F5 R8 X

- y, I9 N* J' e: s5 Y; x
上拉输入模式下,I/O端口的电平信号直接进入输入数据寄存器。但是在I/O端口悬空(在无信号输入)的情况下,输入端的电平可以保持在高电平;并且在I/O端口输入为低电平的时候,输入端的电平也还是低电平。
+ @$ g% Q3 d- C1 @% ^

8 f% M* y" C8 O- o0 X
下拉输入模式

4 q6 V1 X& b, }$ N, }  A

. B; o5 T4 V$ O: @4 K
下拉输入模式下,I/O端口的电平信号直接进入输入数据寄存器。但是在I/O端口悬空(在无信号输入)的情况下,输入端的电平可以保持在低电平;并且在I/O端口输入为高电平的时候,输入端的电平也还是高电平。1 E. g! ?3 o8 J" }
! M9 a$ D. E: }
模拟输入模式
2 \6 m' N5 G: J( k9 b) ~. u# z
: Y  \" x: l/ \# _7 u/ x" h7 |9 j
模拟输入模式下,I/O端口的模拟信号(电压信号,而非电平信号)直接模拟输入到片上外设模块,比如ADC模块等等。6 e+ M) Q2 W$ a9 V1 ~' l
$ B# D/ K7 f% K
开漏输出模式

8 a/ h% j! D* y5 d; E# _
* K1 _* w. _( T* G: A2 m
开漏输出模式下,通过设置位设置/清除寄存器或者输出数据寄存器的值,途经N-MOS管,最终输出到I/O端口。这里要注意N-MOS管,当设置输出的值为高电平的时候,N-MOS管处于关闭状态,此时I/O端口的电平就不会由输出的高低电平决定,而是由I/O端口外部的上拉或者下拉决定;当设置输出的值为低电平的时候,N-MOS管处于开启状态,此时I/O端口的电平就是低电平。同时,I/O端口的电平也可以通过输入电路进行读取;注意,I/O端口的电平不一定是输出的电平。
  W5 e& z$ q2 d5 j3 h
; \" h: x2 l- v3 \
开漏复用输出模式
! E( Y! j# A6 M

; N) q2 H2 L( n, k
开漏复用输出模式,与开漏输出模式很是类似。只是输出的高低电平的来源,不是让CPU直接写输出数据寄存器,取而代之利用片上外设模块的复用功能输出来决定的。

  T" t  {  @) l0 n. R; g
推挽输出模式
6 i! Y( o5 k  F8 i- A& T- c2 R

% Y8 a* i/ Q7 q6 n9 l
推挽输出模式下,通过设置位设置/清除寄存器或者输出数据寄存器的值,途经P-MOS管和N-MOS管,最终输出到I/O端口。这里要注意P-MOS管和N-MOS管,当设置输出的值为高电平的时候,P-MOS管处于开启状态,N-MOS管处于关闭状态,此时I/O端口的电平就由P-MOS管决定:高电平;当设置输出的值为低电平的时候,P-MOS管处于关闭状态,N-MOS管处于开启状态,此时I/O端口的电平就由N-MOS管决定:低电平。同时,I/O端口的电平也可以通过输入电路进行读取;注意,此时I/O端口的电平一定是输出的电平。4 l4 @- X* E# Q' X& w

  {, c" U# \, C
推挽复用输出模式

- J: ^! Y2 }( l+ f
推挽复用输出模式,与推挽输出模式很是类似。只是输出的高低电平的来源,不是让CPU直接写输出数据寄存器,取而代之利用片上外设模块的复用功能输出来决定的。
7 [( M, `& F9 Y! L9 ?

" u5 ~; ~" w2 A: k
1、什么是推挽结构和推挽电路?
推挽结构一般是指两个参数相同的三极管或MOS管分别受两互补信号的控制,总是在一个三极管或MOS管导通的时候另一个截止。高低电平由输出电平决定。

. u( H7 e. P! M% q* L; C
推挽电路是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务。电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小、效率高。输出既可以向负载灌电流,也可以从负载抽取电流。推拉式输出级既提高电路的负载能力,又提高开关速度。
6 \4 l& w+ z4 k7 w
2、开漏输出和推挽输出的区别?
开漏输出:只可以输出强低电平,高电平得靠外部电阻拉高。输出端相当于三极管的集电极。适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内);
% A* k( ^) C  E0 \0 n
推挽输出:可以输出强高、低电平,连接数字器件。
关于推挽输出和开漏输出,最后用一幅最简单的图形来概括:

. q; H2 |- U( `% O* c' Z

* F; s- N: f  K! N% H5 \6 U
该图中左边的便是推挽输出模式,其中比较器输出高电平时下面的PNP三极管截止,而上面NPN三极管导通,输出电平VS+;当比较器输出低电平时则恰恰相反,PNP三极管导通,输出和地相连,为低电平。右边的则可以理解为开漏输出形式,需要接上拉。
' I; U8 [3 @2 g/ ]3 z5 [
3、在STM32中选用怎样选择I/O模式?
浮空输入_IN_FLOATING ——浮空输入,可以做KEY识别,RX1
带上拉输入_IPU——IO内部上拉电阻输入
带下拉输入_IPD—— IO内部下拉电阻输入
模拟输入_AIN ——应用ADC模拟输入,或者低功耗下省电

; O6 r. p$ T4 `* ^7 f
开漏输出_OUT_OD ——IO输出0接GND,IO输出1,悬空,需要外接上拉电阻,才能实现输出高电平。当输出为1时,IO口的状态由上拉电阻拉高电平,但由于是开漏输出模式,这样IO口也就可以由外部电路改变为低电平或不变。可以读IO输入电平变化,实现C51的IO双向功能

3 \1 q9 g# a' G) A4 H% n2 ?" F
推挽输出_OUT_PP ——IO输出0-接GND, IO输出1 -接VCC,读输入值是未知的
复用功能的推挽输出_AF_PP ——片内外设功能(I2C的SCL、SDA)
复用功能的开漏输出_AF_OD——片内外设功能(TX1、MOSI、MISO.SCK.SS)
+ M' i: D& [9 o$ \" T

该用户从未签到

2#
发表于 2020-1-20 12:50 | 只看该作者
111111111111111111111

该用户从未签到

3#
发表于 2020-1-20 12:52 | 只看该作者
111111111111111111111

该用户从未签到

4#
发表于 2020-1-20 13:35 | 只看该作者
谢谢楼主,很详细

“来自电巢APP”

您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-7-23 03:12 , Processed in 0.125000 second(s), 26 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表