找回密码
 注册
关于网站域名变更的通知
查看: 568|回复: 1
打印 上一主题 下一主题

MATLAB ------- 用 MATLAB 得到高密度谱和高分辨率谱的方式比对(附MATLAB脚本)

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2019-12-9 11:11 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
MATLAB ------- 使用 MATLAB 得到高密度谱(补零得到DFT)和高分辨率谱(获得更多的数据得到DFT)的方式对比(附MATLAB脚本)
6 x& ?! W, r( u, N  D2 u. J2 x
, }' H2 I7 p5 {8 K: }" A* |+ A8 D$ h2 I5 m  C% e# n( n
上篇分析了同一有限长序列在不同的N下的DFT之间的不同: MATLAB ------- 用 MATLAB 作图讨论有限长序列的 N 点 DFT(含MATLAB脚本)5 P+ U2 C% b- O. V! M8 Z, \1 j
那篇中,我们通过补零的方式来增加N,这样最后的结论是随着N的不断增大,我们只会得到DTFT上的更多的采样点,也就是说频率采样率增加了。通过补零,得到高密度谱(DFT),但不能得到高分辨率谱,因为补零并没有任何新的信息附加到这个信号上,要想得到高分辨率谱,我们就得通过获得更多的数据来进行求解DFT。7 I6 ^$ d6 u7 I; D
; i' o/ k" _5 s3 ]2 b' @
这篇就是为此而写。7 u+ J$ W6 C. N7 t% O$ O+ E& C

& T5 N- `6 r3 l* G+ k* \3 G案例:# t, `- I/ O: S% N
; I7 {" c; x+ {; V2 n
+ O- _, h) C; M4 l
% c7 t$ p, C4 [
想要基于有限样本数来确定他的频谱。
5 H0 i, X. @0 _# q- C
/ {, i0 Y2 a$ V4 `2 U+ B, F  G下面我们分如下几种情况来分别讨论:3 a! W. M  E0 T8 Z5 P; m) I  ^- P2 C2 z
! I9 F1 C' [: Q0 @* a$ i0 B
a. 求出并画出   ,N = 10 的DFT以及DTFT;% e6 \2 K# Q" W9 v7 p( E

  I# u) }8 X% p2 Tb. 对上一问的x(n)通过补零的方式获得区间[0,99]上的x(n),画出 N = 100点的DFT,并画出DTFT作为对比;6 N% O* Q+ x8 k8 a% S5 L% o- D/ x
( W7 J, C. K7 J0 q7 }( w
c.求出并画出   ,N = 100 的DFT以及DTFT;
3 f+ g8 [. m4 X6 O3 P5 m' {/ P+ f, a7 Q- E; u. M( D1 F( d
d.对c问中的x(n)补零到N = 500,画出 N = 500点的DFT,并画出DTFT作为对比;4 r# m: d' n" d2 T4 B1 q
$ T0 k, M1 L+ b" v6 I* c
e. 比较c和d这两个序列的序列的DFT以及DTFT的异同。
( T, T$ R$ h7 m* a4 X7 q, G
* y, C! H! Y1 G% N- @3 T! ?0 X那就干呗!3 N! M: m  O, F" y% _
2 B1 k1 p% |) l8 S4 q5 _
题解:$ B( W% Z9 V4 V) N) O

: b8 t$ N( Q8 r- H% ba.8 O6 M+ @& q6 p. `& U

3 S% w* B. j9 b7 Y: H) A
  • clc;clear;close all;
  • n = 0:99;
  • x = cos(0.48*pi*n) + cos(0.52*pi*n);
  • n1 = 0:9;
  • y1 = x(1:10);
  • subplot(2,1,1)
  • stem(n1,y1);
  • title('signal x(n), 0 <= n <= 9');
  • xlabel('n');ylabel('x(n) over n in [0,9]');
  • Y1 = dft(y1,10);
  • magY1 = abs(Y1);
  • k1 = 0:1:9;
  • N = 10;
  • w1 = (2*pi/N)*k1;
  • subplot(2,1,2);
  • stem(w1/pi,magY1);
  • title('DFT of x(n) in [0,9]');
  • xlabel('frequency in pi units');
  • %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
  • %Discrete-time Fourier Transform
  • K = 500;
  • k = 0:1:K;
  • w = 2*pi*k/K; %plot DTFT in [0,2pi];
  • X = y1*exp(-j*n1'*w);
  • magX = abs(X);
  • hold on
  • plot(w/pi,magX);
  • hold off
    # [1 k5 N2 K7 f0 ]" S4 x
      ! \) r6 h: `2 V7 W; J# e

5 C6 R" a+ n1 ~) D! {$ P; X- L7 q+ q! g7 v+ ?2 s
b.
( [: g8 t) K* H, G1 V; v
+ ~1 b, M- O. _0 |
  • clc;clear;close all;
  • n = 0:99;
  • x = cos(0.48*pi*n) + cos(0.52*pi*n);
  • % zero padding into N = 100
  • n1 = 0:99;
  • y1 = [x(1:10),zeros(1,90)];
  • subplot(2,1,1)
  • stem(n1,y1);
  • title('signal x(n), 0 <= n <= 99');
  • xlabel('n');ylabel('x(n) over n in [0,99]');
  • Y1 = dft(y1,100);
  • magY1 = abs(Y1);
  • k1 = 0:1:99;
  • N = 100;
  • w1 = (2*pi/N)*k1;
  • subplot(2,1,2);
  • stem(w1/pi,magY1);
  • title('DFT of x(n) in [0,9]');
  • xlabel('frequency in pi units');
  • %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
  • %Discrete-time Fourier Transform
  • K = 500;
  • k = 0:1:K;
  • w = 2*pi*k/K; %plot DTFT in [0,2pi];
  • X = y1*exp(-j*n1'*w);
  • % w = [-fliplr(w),w(2:K+1)];   %plot DTFT in [-pi,pi]
  • % X = [fliplr(X),X(2:K+1)];    %plot DTFT in [-pi,pi]
  • magX = abs(X);
  • % angX = angle(X)*180/pi;
  • % figure
  • % subplot(2,1,1);
  • hold on
  • plot(w/pi,magX);
  • % title('Discrete-time Fourier Transform in Magnitude Part');
  • % xlabel('w in pi units');ylabel('Magnitude of X');
  • % subplot(2,1,2);
  • % plot(w/pi,angX);
  • % title('Discrete-time Fourier Transform in Phase Part');
  • % xlabel('w in pi units');ylabel('Phase of X ');
  • hold off

  • 5 x/ F. k- D$ m3 ], t/ ~+ H' j
      4 w3 h( S8 O6 B! J0 x. u

) r' A1 _  A- m
+ o, V  N* b, f; \9 T" E$ S
0 S2 }5 O$ B2 h4 D. g: a$ ^c.
9 F, c( B* Q' ^. g  i+ ]$ v9 d5 V; Y1 d* m. q
  • clc;clear;close all;
  • n = 0:99;
  • x = cos(0.48*pi*n) + cos(0.52*pi*n);
  • % n1 = 0:99;
  • % y1 = [x(1:10),zeros(1,90)];
  • subplot(2,1,1)
  • stem(n,x);
  • title('signal x(n), 0 <= n <= 99');
  • xlabel('n');ylabel('x(n) over n in [0,99]');
  • Xk = dft(x,100);
  • magXk = abs(Xk);
  • k1 = 0:1:99;
  • N = 100;
  • w1 = (2*pi/N)*k1;
  • subplot(2,1,2);
  • stem(w1/pi,magXk);
  • title('DFT of x(n) in [0,99]');
  • xlabel('frequency in pi units');
  • %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
  • %Discrete-time Fourier Transform
  • K = 500;
  • k = 0:1:K;
  • w = 2*pi*k/K; %plot DTFT in [0,2pi];
  • X = x*exp(-j*n'*w);
  • % w = [-fliplr(w),w(2:K+1)];   %plot DTFT in [-pi,pi]
  • % X = [fliplr(X),X(2:K+1)];    %plot DTFT in [-pi,pi]
  • magX = abs(X);
  • % angX = angle(X)*180/pi;
  • % figure
  • % subplot(2,1,1);
  • hold on
  • plot(w/pi,magX);
  • % title('Discrete-time Fourier Transform in Magnitude Part');
  • % xlabel('w in pi units');ylabel('Magnitude of X');
  • % subplot(2,1,2);
  • % plot(w/pi,angX);
  • % title('Discrete-time Fourier Transform in Phase Part');
  • % xlabel('w in pi units');ylabel('Phase of X ');
  • hold off

  • 2 q  [% J7 R4 n+ |9 ]
      
+ w) x7 Z( o5 G) K+ q' ]8 t
9 `3 {1 S5 X# T
6 M  ^: W( n5 t: D4 S
" p& D% M7 c) L* i太小了,放大看:
' g3 m7 _3 S) a# L5 z% [6 e* h8 o# b4 k( O7 t5 R% T. I
0 E; K6 y4 m' J( n4 F
3 q+ ~, j9 d4 R7 l5 l
! f! h' t2 `6 u# y

  d  D* P4 D1 H2 V# ad.. D3 l; f# @0 F9 d- W

" Y1 @! N2 Y0 f; F, f- n; b, k0 p
  • clc;clear;close all;
  • n = 0:99;
  • x = cos(0.48*pi*n) + cos(0.52*pi*n);
  • % n1 = 0:99;
  • % y1 = [x(1:10),zeros(1,90)];
  • %zero padding into N = 500
  • n1 = 0:499;
  • x1 = [x,zeros(1,400)];
  • subplot(2,1,1)
  • stem(n1,x1);
  • title('signal x(n), 0 <= n <= 499');
  • xlabel('n');ylabel('x(n) over n in [0,499]');
  • Xk = dft(x1,500);
  • magXk = abs(Xk);
  • k1 = 0:1:499;
  • N = 500;
  • w1 = (2*pi/N)*k1;
  • subplot(2,1,2);
  • % stem(w1/pi,magXk);
  • stem(w1/pi,magXk);
  • title('DFT of x(n) in [0,499]');
  • xlabel('frequency in pi units');
  • %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
  • %Discrete-time Fourier Transform
  • K = 500;
  • k = 0:1:K;
  • w = 2*pi*k/K; %plot DTFT in [0,2pi];
  • X = x1*exp(-j*n1'*w);
  • % w = [-fliplr(w),w(2:K+1)];   %plot DTFT in [-pi,pi]
  • % X = [fliplr(X),X(2:K+1)];    %plot DTFT in [-pi,pi]
  • magX = abs(X);
  • % angX = angle(X)*180/pi;
  • % figure
  • % subplot(2,1,1);
  • hold on
  • plot(w/pi,magX,'r');
  • % title('Discrete-time Fourier Transform in Magnitude Part');
  • % xlabel('w in pi units');ylabel('Magnitude of X');
  • % subplot(2,1,2);
  • % plot(w/pi,angX);
  • % title('Discrete-time Fourier Transform in Phase Part');
  • % xlabel('w in pi units');ylabel('Phase of X ');
  • hold off

  • ( P* o8 E% L1 h, E
       ; K$ n6 F5 G6 l( i) a! l# h& u
8 c0 M) K% A% j4 C5 ~* X! S; E5 ?' E

: }+ K/ o! d( M3 K, e+ x4 ?( {- A/ v% X8 E4 W6 C% k
e.
: D6 E: e% C: |7 U, u4 ]
5 M" p9 k0 Z. g% b7 o
  • clc;clear;close all;
  • n = 0:99;
  • x = cos(0.48*pi*n) + cos(0.52*pi*n);
  • subplot(2,1,1)
  • % stem(n,x);
  • % title('signal x(n), 0 <= n <= 99');
  • % xlabel('n');ylabel('x(n) over n in [0,99]');
  • Xk = dft(x,100);
  • magXk = abs(Xk);
  • k1 = 0:1:99;
  • N = 100;
  • w1 = (2*pi/N)*k1;
  • stem(w1/pi,magXk);
  • title('DFT of x(n) in [0,99]');
  • xlabel('frequency in pi units');
  • %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
  • %Discrete-time Fourier Transform
  • K = 500;
  • k = 0:1:K;
  • w = 2*pi*k/K; %plot DTFT in [0,2pi];
  • X = x*exp(-j*n'*w);
  • % w = [-fliplr(w),w(2:K+1)];   %plot DTFT in [-pi,pi]
  • % X = [fliplr(X),X(2:K+1)];    %plot DTFT in [-pi,pi]
  • magX = abs(X);
  • % angX = angle(X)*180/pi;
  • % figure
  • % subplot(2,1,1);
  • hold on
  • plot(w/pi,magX);
  • % title('Discrete-time Fourier Transform in Magnitude Part');
  • % xlabel('w in pi units');ylabel('Magnitude of X');
  • % subplot(2,1,2);
  • % plot(w/pi,angX);
  • % title('Discrete-time Fourier Transform in Phase Part');
  • % xlabel('w in pi units');ylabel('Phase of X ');
  • hold off
  • % clc;clear;close all;
  • %
  • % n = 0:99;
  • % x = cos(0.48*pi*n) + cos(0.52*pi*n);
  • % n1 = 0:99;
  • % y1 = [x(1:10),zeros(1,90)];
  • %zero padding into N = 500
  • n1 = 0:499;
  • x1 = [x,zeros(1,400)];
  • subplot(2,1,2);
  • % subplot(2,1,1)
  • % stem(n1,x1);
  • % title('signal x(n), 0 <= n <= 499');
  • % xlabel('n');ylabel('x(n) over n in [0,499]');
  • Xk = dft(x1,500);
  • magXk = abs(Xk);
  • k1 = 0:1:499;
  • N = 500;
  • w1 = (2*pi/N)*k1;
  • stem(w1/pi,magXk);
  • title('DFT of x(n) in [0,499]');
  • xlabel('frequency in pi units');
  • %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
  • %Discrete-time Fourier Transform
  • K = 500;
  • k = 0:1:K;
  • w = 2*pi*k/K; %plot DTFT in [0,2pi];
  • X = x1*exp(-j*n1'*w);
  • % w = [-fliplr(w),w(2:K+1)];   %plot DTFT in [-pi,pi]
  • % X = [fliplr(X),X(2:K+1)];    %plot DTFT in [-pi,pi]
  • magX = abs(X);
  • % angX = angle(X)*180/pi;
  • % figure
  • % subplot(2,1,1);
  • hold on
  • plot(w/pi,magX,'r');
  • % title('Discrete-time Fourier Transform in Magnitude Part');
  • % xlabel('w in pi units');ylabel('Magnitude of X');
  • % subplot(2,1,2);
  • % plot(w/pi,angX);
  • % title('Discrete-time Fourier Transform in Phase Part');
  • % xlabel('w in pi units');ylabel('Phase of X ');
  • hold off! l% H7 @+ {9 h
     
% C; e7 N6 B* ?
. j( g) t% Q2 w1 J! r- P% C& X; x+ L$ p( ]- p. E0 }1 o* @

6 q# w* y& H2 V局部放大看:6 R3 H/ v8 i, t, m- a
) b& z" y$ U' o0 E% y; a7 Q! |; D1 @

9 X: w% `# h$ {7 m. R0 ]; g1 Z7 n$ H
% V1 P6 {( [# p. q) p4 s
7 u9 q7 C& e7 U/ e+ G: y9 p3 V# B) J( c! {- a# ]
+ X; @+ v7 Q; M5 c( r) s  v! i
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-10-5 11:54 , Processed in 0.156250 second(s), 26 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表