|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
MATLAB ------- 使用 MATLAB 得到高密度谱(补零得到DFT)和高分辨率谱(获得更多的数据得到DFT)的方式对比(附MATLAB脚本)! n/ O7 I! V' O% y3 a
9 F! `2 O: F9 s5 ?, m9 F7 h+ N# r
) c1 ] F6 ?* e! b) Q2 g6 w! e上篇分析了同一有限长序列在不同的N下的DFT之间的不同: MATLAB ------- 用 MATLAB 作图讨论有限长序列的 N 点 DFT(含MATLAB脚本)" O# q5 D+ k) C1 Z& I
那篇中,我们通过补零的方式来增加N,这样最后的结论是随着N的不断增大,我们只会得到DTFT上的更多的采样点,也就是说频率采样率增加了。通过补零,得到高密度谱(DFT),但不能得到高分辨率谱,因为补零并没有任何新的信息附加到这个信号上,要想得到高分辨率谱,我们就得通过获得更多的数据来进行求解DFT。
0 \# m" I4 k# j: v) Z
4 P8 E9 o" w" E o/ I$ k @: O4 d这篇就是为此而写。
6 [( P: A, g" n9 `
5 V; ]" F1 P8 M! m案例:
3 K3 m6 H& j' @ W |$ ]" K+ y1 I. c8 E! @
5 C3 F: f& C4 C- g
% e ?$ Q$ |4 G" U: f0 d0 D$ e/ v想要基于有限样本数来确定他的频谱。
- q' G! r) l0 d. A$ p
0 T, m' }6 ?2 H4 W下面我们分如下几种情况来分别讨论:
* S9 w; g7 a# K! y, l/ y
9 q4 w% x1 x6 C) F4 m ?a. 求出并画出
,N = 10 的DFT以及DTFT;
! n9 {: X4 q, m0 t4 q/ r" W Q3 I' c* T, Z- I+ Q/ y' O+ K
b. 对上一问的x(n)通过补零的方式获得区间[0,99]上的x(n),画出 N = 100点的DFT,并画出DTFT作为对比;+ l4 A% e7 ~4 A4 G1 \
( r' A1 E7 M8 _* S# Fc.求出并画出
,N = 100 的DFT以及DTFT;" j- v, D6 q, Q+ x* q1 C. f
' I" l g$ ]; ^ }1 n2 O: [5 od.对c问中的x(n)补零到N = 500,画出 N = 500点的DFT,并画出DTFT作为对比; I: w2 q4 [8 T6 {+ c5 r' w" w: F
4 L/ l( z5 R) ?
e. 比较c和d这两个序列的序列的DFT以及DTFT的异同。5 Z5 E9 L ^' I. A3 e: D
8 d+ i$ c/ n; f2 I( l& ]那就干呗!" k2 N( }. ^5 f6 ?; P/ ?8 \
4 T5 \( _* E+ |2 ?3 ~题解:/ z& u6 B5 |4 _# P! [
j* a; k# I! Y: C2 i9 ?! v
a.: t3 I; c4 t7 p! F
; f6 J. h1 r# x8 B" x. ~1 r! R& |* G, r- clc;clear;close all;
- n = 0:99;
- x = cos(0.48*pi*n) + cos(0.52*pi*n);
- n1 = 0:9;
- y1 = x(1:10);
- subplot(2,1,1)
- stem(n1,y1);
- title('signal x(n), 0 <= n <= 9');
- xlabel('n');ylabel('x(n) over n in [0,9]');
- Y1 = dft(y1,10);
- magY1 = abs(Y1);
- k1 = 0:1:9;
- N = 10;
- w1 = (2*pi/N)*k1;
- subplot(2,1,2);
- stem(w1/pi,magY1);
- title('DFT of x(n) in [0,9]');
- xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = y1*exp(-j*n1'*w);
- magX = abs(X);
- hold on
- plot(w/pi,magX);
- hold off
$ s ^/ w O$ z4 D4 E( T
4 a2 H6 n/ y5 W6 F0 N! T* ~
- U% T( O4 o) M- Z4 F. V( M C: k5 E
b.
. K! k0 Z Q4 D. ~) k* r3 {. Q4 b; f" S* J# D
- clc;clear;close all;
- n = 0:99;
- x = cos(0.48*pi*n) + cos(0.52*pi*n);
- % zero padding into N = 100
- n1 = 0:99;
- y1 = [x(1:10),zeros(1,90)];
- subplot(2,1,1)
- stem(n1,y1);
- title('signal x(n), 0 <= n <= 99');
- xlabel('n');ylabel('x(n) over n in [0,99]');
- Y1 = dft(y1,100);
- magY1 = abs(Y1);
- k1 = 0:1:99;
- N = 100;
- w1 = (2*pi/N)*k1;
- subplot(2,1,2);
- stem(w1/pi,magY1);
- title('DFT of x(n) in [0,9]');
- xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = y1*exp(-j*n1'*w);
- % w = [-fliplr(w),w(2:K+1)]; %plot DTFT in [-pi,pi]
- % X = [fliplr(X),X(2:K+1)]; %plot DTFT in [-pi,pi]
- magX = abs(X);
- % angX = angle(X)*180/pi;
- % figure
- % subplot(2,1,1);
- hold on
- plot(w/pi,magX);
- % title('Discrete-time Fourier Transform in Magnitude Part');
- % xlabel('w in pi units');ylabel('Magnitude of X');
- % subplot(2,1,2);
- % plot(w/pi,angX);
- % title('Discrete-time Fourier Transform in Phase Part');
- % xlabel('w in pi units');ylabel('Phase of X ');
- hold off
- / m; l) Y; ] X2 S4 z% C: x
. q2 o7 n" w, u' V, {
) _: y0 P1 u3 B8 r4 m + n' Z$ a2 b. l; y
8 ~1 T: r6 X7 b; Q& Z
c.0 u! i, `0 u4 }! v) [* _) G+ v
# U! T, r5 u1 n3 H# Q3 ?( s/ b
- clc;clear;close all;
- n = 0:99;
- x = cos(0.48*pi*n) + cos(0.52*pi*n);
- % n1 = 0:99;
- % y1 = [x(1:10),zeros(1,90)];
- subplot(2,1,1)
- stem(n,x);
- title('signal x(n), 0 <= n <= 99');
- xlabel('n');ylabel('x(n) over n in [0,99]');
- Xk = dft(x,100);
- magXk = abs(Xk);
- k1 = 0:1:99;
- N = 100;
- w1 = (2*pi/N)*k1;
- subplot(2,1,2);
- stem(w1/pi,magXk);
- title('DFT of x(n) in [0,99]');
- xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = x*exp(-j*n'*w);
- % w = [-fliplr(w),w(2:K+1)]; %plot DTFT in [-pi,pi]
- % X = [fliplr(X),X(2:K+1)]; %plot DTFT in [-pi,pi]
- magX = abs(X);
- % angX = angle(X)*180/pi;
- % figure
- % subplot(2,1,1);
- hold on
- plot(w/pi,magX);
- % title('Discrete-time Fourier Transform in Magnitude Part');
- % xlabel('w in pi units');ylabel('Magnitude of X');
- % subplot(2,1,2);
- % plot(w/pi,angX);
- % title('Discrete-time Fourier Transform in Phase Part');
- % xlabel('w in pi units');ylabel('Phase of X ');
- hold off
" Q' S- F! k1 S g 6 D7 N( E# u; ~
& z* Y5 P7 A. A4 r
; e3 H% S# ?3 _, J9 D2 y: v
- Q0 L9 I* ]4 f, E$ u' B; D- I太小了,放大看:1 n9 U+ C8 {7 w' J5 T9 H7 ?
; \ V4 {( F/ i% w ^: ?
# [5 o% R2 M% \
5 b* J0 G9 M' e) Y* W( C2 c
% V; t: e1 O, l. n3 j, |
6 N& D5 T- R" g4 ?' L' zd.5 o7 l7 S6 a- u! |3 i
8 p3 m, m: o& _
- clc;clear;close all;
- n = 0:99;
- x = cos(0.48*pi*n) + cos(0.52*pi*n);
- % n1 = 0:99;
- % y1 = [x(1:10),zeros(1,90)];
- %zero padding into N = 500
- n1 = 0:499;
- x1 = [x,zeros(1,400)];
- subplot(2,1,1)
- stem(n1,x1);
- title('signal x(n), 0 <= n <= 499');
- xlabel('n');ylabel('x(n) over n in [0,499]');
- Xk = dft(x1,500);
- magXk = abs(Xk);
- k1 = 0:1:499;
- N = 500;
- w1 = (2*pi/N)*k1;
- subplot(2,1,2);
- % stem(w1/pi,magXk);
- stem(w1/pi,magXk);
- title('DFT of x(n) in [0,499]');
- xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = x1*exp(-j*n1'*w);
- % w = [-fliplr(w),w(2:K+1)]; %plot DTFT in [-pi,pi]
- % X = [fliplr(X),X(2:K+1)]; %plot DTFT in [-pi,pi]
- magX = abs(X);
- % angX = angle(X)*180/pi;
- % figure
- % subplot(2,1,1);
- hold on
- plot(w/pi,magX,'r');
- % title('Discrete-time Fourier Transform in Magnitude Part');
- % xlabel('w in pi units');ylabel('Magnitude of X');
- % subplot(2,1,2);
- % plot(w/pi,angX);
- % title('Discrete-time Fourier Transform in Phase Part');
- % xlabel('w in pi units');ylabel('Phase of X ');
- hold off
/ p( o$ g2 y& x . M1 O) F, z% G$ b0 D7 ]( f( s
# Y0 u! ]! n* L2 q0 r 7 I% \1 }- H. u# n9 W
0 [+ S0 ]7 x" ?7 c9 b* |
e.
! c, m$ l: \2 [( {7 e6 O
3 g; A1 q( }' }: h9 N- clc;clear;close all;
- n = 0:99;
- x = cos(0.48*pi*n) + cos(0.52*pi*n);
- subplot(2,1,1)
- % stem(n,x);
- % title('signal x(n), 0 <= n <= 99');
- % xlabel('n');ylabel('x(n) over n in [0,99]');
- Xk = dft(x,100);
- magXk = abs(Xk);
- k1 = 0:1:99;
- N = 100;
- w1 = (2*pi/N)*k1;
- stem(w1/pi,magXk);
- title('DFT of x(n) in [0,99]');
- xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = x*exp(-j*n'*w);
- % w = [-fliplr(w),w(2:K+1)]; %plot DTFT in [-pi,pi]
- % X = [fliplr(X),X(2:K+1)]; %plot DTFT in [-pi,pi]
- magX = abs(X);
- % angX = angle(X)*180/pi;
- % figure
- % subplot(2,1,1);
- hold on
- plot(w/pi,magX);
- % title('Discrete-time Fourier Transform in Magnitude Part');
- % xlabel('w in pi units');ylabel('Magnitude of X');
- % subplot(2,1,2);
- % plot(w/pi,angX);
- % title('Discrete-time Fourier Transform in Phase Part');
- % xlabel('w in pi units');ylabel('Phase of X ');
- hold off
- % clc;clear;close all;
- %
- % n = 0:99;
- % x = cos(0.48*pi*n) + cos(0.52*pi*n);
- % n1 = 0:99;
- % y1 = [x(1:10),zeros(1,90)];
- %zero padding into N = 500
- n1 = 0:499;
- x1 = [x,zeros(1,400)];
- subplot(2,1,2);
- % subplot(2,1,1)
- % stem(n1,x1);
- % title('signal x(n), 0 <= n <= 499');
- % xlabel('n');ylabel('x(n) over n in [0,499]');
- Xk = dft(x1,500);
- magXk = abs(Xk);
- k1 = 0:1:499;
- N = 500;
- w1 = (2*pi/N)*k1;
- stem(w1/pi,magXk);
- title('DFT of x(n) in [0,499]');
- xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = x1*exp(-j*n1'*w);
- % w = [-fliplr(w),w(2:K+1)]; %plot DTFT in [-pi,pi]
- % X = [fliplr(X),X(2:K+1)]; %plot DTFT in [-pi,pi]
- magX = abs(X);
- % angX = angle(X)*180/pi;
- % figure
- % subplot(2,1,1);
- hold on
- plot(w/pi,magX,'r');
- % title('Discrete-time Fourier Transform in Magnitude Part');
- % xlabel('w in pi units');ylabel('Magnitude of X');
- % subplot(2,1,2);
- % plot(w/pi,angX);
- % title('Discrete-time Fourier Transform in Phase Part');
- % xlabel('w in pi units');ylabel('Phase of X ');
- hold off8 c" B! c, o: U8 N, m( `( Y
0 T, G4 y$ }% }8 R. H2 B4 e( y
- R2 ?. z* C. s
. s. r4 P d+ q
. h* p6 k g8 _. ]1 [) w% K4 k) B: a局部放大看:
$ h6 k1 ^3 [! j5 r. M7 ? O$ H { A9 A6 v0 X
% ~+ m/ i8 J e m5 H! \4 i- E [
$ I2 U! m& ?9 Q0 Y2 i
7 ]2 X9 Y9 ^' T
4 q5 w T: r1 G( e' A% x
8 i$ x0 ^/ c& d/ j/ a3 o5 ?! H: H5 ~ |
|