找回密码
 注册
关于网站域名变更的通知
查看: 441|回复: 1
打印 上一主题 下一主题

MATLAB —— 信号处理工具箱之fft的案例分析

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2019-11-26 14:06 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
, f0 E  ^: `3 m, J& o
上篇:
MATLAB —— 信号处理工具箱之fft的介绍和相关案例分析介绍了MATLAB信号处理工具箱中的信号变换 fft 并分析了一个案例,就是被噪声污染了的信号的频谱分析。, A2 w8 ?# m5 h. ?" j' y

2 J& s& f. h, e这篇博文继续分析几个小案例:
2 z2 }- w: t; T  t0 z& J3 x! ~3 e* r6 f7 H& Q" F7 V
Gaussian Pulse
+ Z6 ?+ c  M' u4 p
这个案例是将高斯脉冲从时域变换到频域,高斯脉冲的信息在下面的程序中都有注释:
( e/ t: ~7 F2 x3 O2 t  J3 X- ]3 L' r( e$ {
  • clc
  • clear
  • close all
  • % Convert a Gaussian pulse from the time domain to the frequency domain.
  • %
  • % Define signal parameters and a Gaussian pulse, X.
  • Fs = 100;           % Sampling frequency
  • t = -0.5:1/Fs:0.5;  % Time vector
  • L = length(t);      % Signal length
  • X = 1/(4*sqrt(2*pi*0.01))*(exp(-t.^2/(2*0.01)));
  • % Plot the pulse in the time domain.
  • figure();
  • plot(t,X)
  • title('Gaussian Pulse in Time Domain')
  • xlabel('Time (t)')
  • ylabel('X(t)')
  • % To use the fft function to convert the signal to the frequency domain,
  • % first identify a new input length that is the next power of 2 from the original signal length.
  • % This will pad the signal X with trailing zeros in order to improve the peRFormance of fft.
  • n = 2^nextpow2(L);
  • % Convert the Gaussian pulse to the frequency domain.
  • %
  • Y = fft(X,n);
  • % Define the frequency domain and plot the unique frequencies.
  • f = Fs*(0: (n/2))/n;
  • P = abs(Y/n);
  • figure();
  • plot(f,P(1:n/2+1))
  • title('Gaussian Pulse in Frequency Domain')
  • xlabel('Frequency (f)')
  • ylabel('|P(f)|')

  • 8 K' ], Y) {7 X, c% X
        
/ h( E# a8 h2 J4 `! _
7 F. ]  G$ g1 a. S: t8 x高斯脉冲在时域的图像:
; A2 V+ `! C9 K9 T8 Q( X) d7 ]+ L: L0 q* T! E; `

, T7 o$ }, Y& z3 u6 h& q, m$ R9 _/ Y2 }) s* {% x4 B
高斯脉冲在频域的图像:+ N4 b* l( D0 t) U5 K3 R8 v
& ~4 k/ `" @6 F8 A/ r
6 g% x( g5 {3 b) V. _6 E7 C: v3 h  L
8 ~. X$ R- d& u8 v6 U! V9 A2 |, b

) J( v/ U6 V9 X+ c! m. L( C& a& r5 m8 H
Cosine Waves

1 G9 w& K1 A: ^9 P  v
  P1 O, H( j6 I. W$ N$ v这个例子比较简单,就是不同频率的余弦波在时域以及频域的比较:0 v) `- Y% T) y" n

9 U9 @+ A* R, j# H0 R* M
  • clc
  • clear
  • close all
  • % Compare cosine waves in the time domain and the frequency domain.
  • %
  • % Specify the parameters of a signal with a sampling frequency of 1kHz and a signal duration of 1 second.
  • : N5 |2 W4 v' x
  • Fs = 1000;                    % Sampling frequency
  • T = 1/Fs;                     % Sampling period
  • L = 1000;                     % Length of signal
  • t = (0: L-1)*T;                % Time vector
  • % Create a matrix where each row represents a cosine wave with scaled frequency.
  • % The result, X, is a 3-by-1000 matrix. The first row has a wave frequency of 50,
  • % the second row has a wave frequency of 150, and the third row has a wave frequency of 300.

  • / x5 h6 B' m& l* T: t) N' ^5 T
  • x1 = cos(2*pi*50*t);          % First row wave
  • x2 = cos(2*pi*150*t);         % Second row wave
  • x3 = cos(2*pi*300*t);         % Third row wave
  •   v( E1 J& j" H0 r8 Y; X" s8 R! t' b
  • X = [x1; x2; x3];
  • % Plot the first 100 entries from each row of X in a single figure in order and compare their frequencies.
  • $ T" X0 |) ?' P2 f# r0 O
  • figure();
  • for i = 1:3
  •     subplot(3,1,i)
  •     plot(t(1:100),X(i,1:100))
  •     title(['Row ',num2str(i),' in the Time Domain'])
  • end

  • 6 a; J2 N% G8 @5 S, @. a/ H
  • % For algorithm performance purposes, fft allows you to pad the input with trailing zeros.
  • % In this case, pad each row of X with zeros so that the length of each row is the next higher power of 2 from the current length.
  • % Define the new length using the nextpow2 function.
  • , k9 o6 r! e5 Q
  • n = 2^nextpow2(L);
  • % Specify the dim argument to use fft along the rows of X, that is, for each signal.
  • # d7 _/ {2 `8 B
  • dim = 2;
  • % Compute the Fourier transform of the signals.
  • 9 V# Q( s. X/ |- x* k% {5 G, W6 T
  • Y = fft(X,n,dim);
  • % Calculate the double-sided spectrum and single-sided spectrum of each signal.

  • , a( I1 Y$ q7 a, m6 ~  \
  • P2 = abs(Y/L);
  • P1 = P2(:,1:n/2+1);
  • P1(:,2:end-1) = 2*P1(:,2:end-1);
  • % In the frequency domain, plot the single-sided amplitude spectrum for each row in a single figure.
  • , F" n% O- z6 w5 d2 E( [
  • figure();
  • for i=1:3
  •     subplot(3,1,i)
  •     plot(0: (Fs/n): (Fs/2-Fs/n),P1(i,1:n/2))
  •     title(['Row ',num2str(i),' in the Frequency Domain'])
  • end$ P; z, d( X( s  _  j9 w
           5 j% h( P1 E. S( w: H7 ^6 e0 S: F
9 n! }8 l3 [" j% L# z6 T- G' Q) W
下图是频率为50Hz,150Hz以及300Hz的余弦波在时域的图像:
  n1 ~7 l9 g! ~2 r# d) w4 k+ m! H, u$ }* g6 e6 b

5 A! r0 E' S! R0 G6 R7 f8 ?; Y7 P% @1 a0 n
下图分别为其fft:) K8 h: v- X0 t4 w0 Y

8 z8 j/ S& F! _" S6 L
- a3 E: S: y" J% Z7 N: `# I  k; k) L
从频域图中可以清晰的看到它们的频率成分位于何处。
2 F3 v- f* T; c

7 }( W  K( ?  [
& U) P! {: Z! _" z" }1 U9 i
  • TA的每日心情
    开心
    2020-12-3 15:53
  • 签到天数: 38 天

    [LV.5]常住居民I

    2#
    发表于 2019-11-26 16:00 | 只看该作者
    看看,学习一下
    您需要登录后才可以回帖 登录 | 注册

    本版积分规则

    关闭

    推荐内容上一条 /1 下一条

    EDA365公众号

    关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

    GMT+8, 2025-6-12 08:56 , Processed in 0.094726 second(s), 26 queries , Gzip On.

    深圳市墨知创新科技有限公司

    地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

    快速回复 返回顶部 返回列表