找回密码
 注册
关于网站域名变更的通知
查看: 882|回复: 3
打印 上一主题 下一主题

EMC精品书籍分享贴

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2018-12-23 22:33 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
1.电磁兼容导论英文版# r" \2 F/ a* n/ O" y
《电磁兼容导论》是机械工业出版社2006年出版的图书,由保罗编著。本书全面系统地讲述电碰兼容(EMC)的基本原理及其应用。
9 X6 @# B+ X- H, S' n( c  q; g本书全面系统地讲述电碰兼容(EMC)的基本原理及其应用,包括EMC概论、电子系统的EMC要求、电磁场理论、传输线、天线、天件的非理想性能、信号谱、辐射发射和敏感度、传导发射和传导敏感度、串扰、屏蔽、静电放电、的系统设计等内容。本书讲述深入浅出,配合典型例证,实用性强。可作为高等院校相关专业电磁容课程教材,也可供EMC设计开发人员参考。9 k, w  l8 z: N7 k0 Y' j1 {2 B

  I4 q3 t' ]0 C0 ?! kContents+ H' _0 s+ ~! K5 X
Preface xvii
& p1 N) B* u5 @, f  E1 Introduction to Electromagnetic Compatibility (EMC) 19 A3 z. g( j# s. q
1.1 Aspects of EMC 3
0 g! D3 s0 a2 |1.2 History of EMC 10: u" d% x, E& V; y3 r; S- C2 E* a
1.3 Examples 12
3 `8 f/ ]" N* E! I! D4 ]; ~1.4 Electrical Dimensions and Waves 14
1 x: q7 F  J  e1.5 Decibels and Common EMC Units 235 [4 e! B8 F+ j! S0 l/ @0 \
1.5.1 Power Loss in Cables 32. V6 Y2 r0 I3 V8 A' J% O- ]
1.5.2 Signal Source Specification 372 X) ~# n3 p3 S6 {
Problems 430 c. |4 m+ y4 \
References 48
, X5 L$ n7 P( M: O2 EMC Requirements for Electronic Systems 49
0 P3 L: P0 ]  }! k7 D0 _! [+ `) L2.1 Governmental Requirements 50+ |- h! c; E0 N
2.1.1 Requirements for Commercial Products Marketed7 G6 ^0 Q0 x- n7 i! n3 }
in the United States 50
, r  ]0 B' {  t' {* a2.1.2 Requirements for Commercial Products Marketed& i* g  `! ^& v+ i" I# ~! T
outside the United States 55. j+ |5 X0 R$ N: v5 _  a
2.1.3 Requirements for Military Products Marketed in the" `3 @- C# i+ U' b( ^
United States 607 h+ S6 P8 l- ^  h* U
2.1.4 Measurement of Emissions for Verification of Compliance 62* ?- w) r; e$ D* r/ F) O
2.1.4.1 Radiated Emissions 64
- X0 P* r2 w: R0 D' c  N2.1.4.2 Conducted Emissions 67$ H3 Q+ {- W5 `
2.1.5 Typical Product Emissions 72
* k5 o) H1 C1 X5 z/ h2.1.6 A Simple Example to Illustrate the Difficulty in Meeting
0 O8 a) Q& L) Qthe Regulatory Limits 78
/ W: T- G0 S/ j+ o0 R! @8 Gvii
% G' I  `" h$ s4 D+ F6 p2.2 Additional Product Requirements 79( \2 g9 \0 K+ ]: q
2.2.1 Radiated Susceptibility (Immunity) 81! ~, U7 W: U* J+ I2 J/ ~
2.2.2 Conducted Susceptibility (Immunity) 81) V9 e9 [  Y1 E! W& L. w% q+ ^
2.2.3 Electrostatic Discharge (ESD) 81
0 w' F3 z) D" W- ?$ ]! A8 P2.2.4 Requirements for Commercial Aircraft 82
* ~& [0 F8 L+ s8 v. |% l) g2.2.5 Requirements for Commercial Vehicles 82
2 v) V; Y- b- y  ^) S2.3 Design Constraints for Products 82
! `5 ]8 F8 W. x% j- o. X" x, C0 L2.4 Advantages of EMC Design 841 _. i0 V  H% i$ K  |
Problems 863 D/ F8 n! s/ k* h
References 89
$ b8 T) E4 r* M6 e) ], a9 E" ^1 G1 c9 S3 Signal Spectra—the Relationship between the Time Domain and; N/ X3 o. ?! _6 \$ F" h) b
the Frequency Domain 91. \6 C* w. }- ]- [! @
3.1 Periodic Signals 91
- A: S3 q0 @1 ~3.1.1 The Fourier Series Representation of Periodic Signals 94
3 W# M6 Y" k6 v3.1.2 Response of Linear Systems to Periodic Input Signals 104* G  E- R) o  v
3.1.3 Important Computational Techniques 1116 G8 [: K9 }3 b$ \# H
3.2 Spectra of Digital Waveforms 118
+ _) @; E$ x* w0 _  ~( _3.2.1 The Spectrum of Trapezoidal (Clock) Waveforms 118
7 H( I4 m: c3 R7 \3.2.2 Spectral Bounds for Trapezoidal Waveforms 1226 p; ~5 @: I; v  l; h
3.2.2.1 Effect of Rise/Falltime on Spectral Content 1235 `* ~* r, w4 _8 O$ p. W
3.2.2.2 Bandwidth of Digital Waveforms 1325 W9 G- @2 ?# W, c8 x$ U
3.2.2.3 Effect of Repetition Rate and Duty Cycle 136
3 |2 I9 w9 D1 f+ r6 f% ]5 y) T6 j3.2.2.4 Effect of Ringing (Undershoot/Overshoot) 137
3 ^2 B+ u8 s1 ~( L3.2.3 Use of Spectral Bounds in Computing Bounds on the
( d) G; G9 }$ G. F2 t$ c& s( jOutput Spectrum of a Linear System 140
: n$ P7 T- \' _( D% H3.3 Spectrum Analyzers 142
5 y! k+ n1 j4 ]! F- l2 e3.3.1 Basic Principles 142
* F! R- D0 d' z) M- N" P3.3.2 Peak versus Quasi-Peak versus Average 146
2 G# |- ?8 G# o: w/ F- B" M& J! N$ _9 @. _$ j& M( q; ?
3.4 Representation of Nonperiodic Waveforms 148
# b; K3 x1 V9 w. p3.4.1 The Fourier Transform 148# u. m3 r* x* H
3.4.2 Response of Linear Systems to Nonperiodic Inputs 151
2 B! d" ~7 G) ^3 B6 s( v( u! ~. ~3.5 Representation of Random (Data) Signals 151  o/ c7 `* e1 W" k* W7 P
3.6 Use of SPICE (Pspice) In Fourier Analysis 155
0 a1 S; D/ X6 a, u$ \8 A6 IProblems 167
, \4 e' A; J# g9 @- J1 IReferences 175
: _. m1 S) e8 m( Y4 Transmission Lines and Signal Integrity 177. v9 l3 ]3 u3 c
4.1 The Transmission-Line Equations 181
( W" I0 _1 j( x# `/ ]# |9 t4.2 The Per-Unit-Length Parameters 184
6 O. w6 }2 @' Z! ]+ z3 L5 f4.2.1 Wire-Type Structures 186
6 K/ }* y! I! _( A) G- S  D( nviii CONTENTS0 Q  w; N+ E; ?- Z9 F+ _: F7 M7 h- v
4.2.2 Printed Circuit Board (PCB) Structures 199  b; ^9 k( W5 _1 U
4.3 The Time-Domain Solution 2044 t# Q6 j! H* l/ s* P
, E  L: g, E2 O: V; h
4.3.1 Graphical Solutions 204" ^: @+ B7 r/ K+ Q$ @
4.3.2 The SPICE Model 218
$ }# O# k# ~9 o- P: s% @4.4 High-Speed Digital Interconnects and Signal Integrity 225
! n7 P. M9 t# A- l4.4.1 Effect of Terminations on the Line Waveforms 230. ?7 h3 T$ L, o  x6 Z
4.4.1.1 Effect of Capacitive Terminations 233  q$ K7 }, ?7 T" ?$ X, Z  n. n
4.4.1.2 Effect of Inductive Terminations 236
+ a1 A! N1 G: w/ ?  c6 I/ ?# X; d4.4.2 Matching Schemes for Signal Integrity 238
4 u7 o& s" r, f) `$ x4.4.3 When Does the Line Not Matter, i.e., When is Matching/ Y: L9 @4 p# {) E7 [
Not Required? 244
4 h" N/ W1 I  u- W) B4.4.4 Effects of Line Discontinuities 247
& W% x- t. J! q& A4.5 Sinusoidal Excitation of the Line and the Phasor Solution 260
1 g, i. b3 P. u4.5.1 Voltage and Current as Functions of Position 261" c( F  N& S/ {- f9 @$ j
4.5.2 Power Flow 269
( F6 x; ?% g* L. M& w# y( I4.5.3 Inclusion of Losses 270
; S2 v* [) D; N5 Z; t4.5.4 Effect of Losses on Signal Integrity 273. R0 p3 }( R% ~4 Q1 P. C
4.6 Lumped-Circuit Approximate Models 283$ b; S' r) w: |
Problems 287
- U( x$ |1 l) q, `4 {References 297
& ]# E. }* I& Y& g; n5 Nonideal Behavior of Components 2992 G: l( _  q# k. ?
5.1 Wires 300
& Y" C) w0 w4 j7 g5.1.1 Resistance and Internal Inductance of Wires 304
* ~# g# i" p8 _0 [5.1.2 External Inductance and Capacitance of Parallel Wires 308/ x4 G2 U2 h! u" i3 J
5.1.3 Lumped Equivalent Circuits of Parallel Wires 309/ u' v/ e; ^$ k9 T& S
5.2 Printed Circuit Board (PCB) Lands 3127 U5 @- j6 x3 V& Y! ^' r' w
5.3 Effect of Component Leads 315  V! a7 t5 D$ M2 r+ s
5.4 Resistors 317& ?) k& }* q4 E/ U7 q3 e
5.5 Capacitors 325
: @* R# f$ y0 c5 h( a5.6 Inductors 336
: j$ r- f! Y, |5.7 Ferromagnetic Materials—Saturation and Frequency Response 340/ ~' [  X7 W3 C8 V( `7 }( k
5.8 Ferrite Beads 343' i; H7 A9 V, x5 [7 E% [; h
5.9 Common-Mode Chokes 3460 P0 _5 a5 p8 {8 b+ q$ F" x! W
5.10 Electromechanical Devices 352
/ R0 O, d3 q% d- T* N" y/ F5.10.1 DC Motors 352
2 e; t( I: H0 A' |! R6 o$ g. S5.10.2 Stepper Motors 355
+ T3 F) {) e2 j) z" k) H5.10.3 AC Motors 3559 x' r" r: `- v, v
5.10.4 Solenoids 356
2 ]2 l1 m& q3 }2 `9 M- d5.11 Digital Circuit Devices 357
0 h& ]' D: ^) M0 P# v8 |! M5.12 Effect of Component Variability 358/ w$ G5 r$ w- g" g1 c( q+ m5 B
5.13 Mechanical Switches 359, v6 T: U+ k0 T) K4 c4 e
5.13.1 Arcing at Switch Contacts 360
  f8 R/ M- r% V+ r6 D1 ]/ c* c- UCONTENTS ix
6 ^& L! |9 {3 h3 ?5.13.2 The Showering Arc 363
3 O% }, _. x: K% L/ P5.13.3 Arc Suppression 364
9 k4 [5 \+ \( kProblems 369
& t3 g& \( o# K3 x( E' WReferences 375  z) @6 J2 c* w8 E3 L% Z
6 Conducted Emissions and Susceptibility 377
4 K: O6 R- }5 m6.1 Measurement of Conducted Emissions 378
% T; l, T, c4 [6.1.1 The Line Impedance Stabilization Network (LISN) 379
: ~. t: O  d) z. ]6.1.2 Common- and Differential-Mode Currents Again 381
1 o3 y" T3 V$ t0 M/ c9 x2 O0 |6.2 Power Supply Filters 385
- l  a, U9 A" W  o# K. }6.2.1 Basic Properties of Filters 385
# {  p! {/ h; G2 ^) W# J6.2.2 A Generic Power Supply Filter Topology 388
  _. a# ^' Q; f4 O! q2 l% S0 P, a0 P6.2.3 Effect of Filter Elements on Common- and
& m# O9 b, ^7 C# O) q# f. kDifferential-Mode Currents 390( r. X8 m" {& p* F# o+ @8 c' P; l/ _6 L
6.2.4 Separation of Conducted Emissions into Commonand% v( G) a9 H$ |; J0 Q: a; q. q# ]
Differential-Mode Components for
: e& K- R' G2 R* q. jDiagnostic Purposes 396% u) u4 B" x; [! a+ s3 E9 I
6.3 Power Supplies 401
; m2 `: D3 x& X) g2 P0 V6.3.1 Linear Power Supplies 405
$ w! E) z$ w# {- M; k# n* a: u1 r6.3.2 Switched-Mode Power Supplies (SMPS) 406: ^, k* m$ T& o( J
6.3.3 Effect of Power Supply Components on Conducted
: d' r5 R) o8 b' Q: h) i* [Emissions 409
9 @0 ]+ [5 E! ]$ T# j8 n" q$ u6.4 Power Supply and Filter Placement 414
# i; }9 X% H" p. ~9 Y( m/ R6.5 Conducted Susceptibility 416
% K0 Q; d# ?) OProblems 416
' h2 N* J) E4 ~: _3 @4 r! o  xReferences 4190 H# B3 E1 \1 t: k
7 Antennas 421; y/ W) `6 `# G8 H2 x# C4 ~
7.1 Elemental Dipole Antennas 421
) y- x& M$ o2 p( _3 u7.1.1 The Electric (Hertzian) Dipole 422
( f0 `* Q; q+ S1 V$ c9 f  a7 z7.1.2 The Magnetic Dipole (Loop) 426
% g8 _  M- c2 E& C) k9 D. a3 e7.2 The Half-Wave Dipole and Quarter-Wave Monopole Antennas 429
0 w+ N! A# }! r  o9 C8 L7 z7.3 Antenna Arrays 440. W6 Y2 }2 D1 u& P3 c; \
7.4 Characterization of Antennas 4482 E; w  h( e; D2 x/ x
7.4.1 Directivity and Gain 448
" d/ p4 w* g' _7.4.2 Effective Aperture 454
4 I- t7 X0 S, A8 a3 A0 R7.4.3 Antenna Factor 456
& w: z4 m* B4 H" l7.4.4 Effects of Balancing and Baluns 460+ E" e1 R5 i3 M/ n+ R# h- |
7.4.5 Impedance Matching and the Use of pads 463) _3 y" s" h1 t- }
7.5 The Friis Transmission Equation 466
; N/ R6 M" e3 @/ D. ]# @9 O' R7.6 Effects of Reflections 470
  }( l* S  f8 I4 A7.6.1 The Method of Images 470
. N& C0 b/ w5 d9 {x CONTENTS
/ `; C' L6 P) h: {6 M3 u7.6.2 Normal Incidence of Uniform Plane Waves on Plane,5 @( j2 g7 y' A
Material Boundaries 470; j7 H/ _: d1 T3 v# Z
7.6.3 Multipath Effects 479
/ v6 j* l$ `$ Q( C7.7 Broadband Measurment Antennas 486' D3 a5 y" d$ @, E* l
7.7.1 The Biconical Antenna 487$ d" g% j" ]6 N8 l0 z* }# A
7.7.2 The Log-Periodic Antenna 490
2 R' K* j: ~2 Z1 d% TProblems 494& f" b3 d7 F0 D1 [
References 501
! ?& Q% T: c+ x: C, _7 d: L8 Radiated Emissions and Susceptibility 503
# h" ^8 g+ l; n: b4 Z& t8.1 Simple Emission Models for Wires and PCB Lands 504
8 Q: [1 @, h& J! N8.1.1 Differential-Mode versus Common-Mode Currents 504
( L" E+ h/ M5 s! P& N/ O8.1.2 Differential-Mode Current Emission Model 509
0 A% H- ]7 {3 o0 F+ y, p8.1.3 Common-Mode Current Emission Model 514
7 [/ @3 m- `% U) q0 m8.1.4 Current Probes 518  @' ~& }) P$ l' i
8.1.5 Experimental Results 523
8 ]9 K. q, I% {+ D7 @1 u8.2 Simple Susceptibility Models for Wires and PCB Lands 533, B* i; z. l$ {* y0 t$ h) d3 W* ^
8.2.1 Experimental Results 544
. E  F6 _% J, F  j8.2.2 Shielded Cables and SuRFace Transfer Impedance 546) Q9 e* F( ^( T$ M$ W, e
Problems 550! f; V3 w# m8 s0 z+ ^4 l) |
References 556- l+ f) p9 `: J. I$ u& p' w
9 Crosstalk 559% G8 G5 F- G( z: B$ g# n
9.1 Three-Conductor Transmission Lines and Crosstalk 560
7 R9 B/ {! p  p6 k9.2 The Transmission-Line Equations for Lossless Lines 564
2 F9 ?) \& {2 K$ k0 d9.3 The Per-Unit-Length Parameters 567, N, u; ]$ R) |- m5 R3 o+ f% l$ C
9.3.1 Homogeneous versus Inhomogeneous Media 568  I6 l3 b' z+ F9 r
9.3.2 Wide-Separation Approximations for Wires 570
, l" i6 h! K( h: }# p- F' a  G# U# u# Q9.3.3 Numerical Methods for Other Structures 5804 s( b* R" Z$ |' U1 d) q
9.3.3.1 Wires with Dielectric Insulations
/ y3 {4 _7 }6 @(Ribbon Cables) 586
7 T' R! V/ g$ j9 b- b. I9.3.3.2 Rectangular Cross-Section Conductors
& O) V, Y/ P5 T% M/ e5 {(PCB Lands) 590
* h% Z$ Q7 f$ t+ w9.4 The Inductive–Capacitive Coupling Approximate Model 595
+ p8 [" K1 A, y1 M. ?# H3 |. ]( D9.4.1 Frequency-Domain Inductive-Capacitive Coupling
0 a  Z: X; M5 Y  S/ Q" H& O5 GModel 599
: Q" _8 Q2 t2 z; j9.4.1.1 Inclusion of Losses: Common-Impedance7 T3 j0 D- c' Z3 O8 w9 y2 q
Coupling 601
1 N) B1 J; B1 R) X, u4 |9.4.1.2 Experimental Results 604
* X1 d+ {3 ^) e) G8 v' G+ B! w: X9.4.2 Time-Domain Inductive–Capacitive Coupling Model 612, X. h% u5 ~" B1 B' u2 ?6 k
9.4.2.1 Inclusion of Losses: Common-Impedance Coupling 6162 `0 [8 H, R8 B
9.4.2.2 Experimental Results 617
6 U: w) H# |4 n  y( wCONTENTS xi
8 Q( d8 u8 L' s9.5 Lumped-Circuit Approximate Models 6241 k9 H8 _7 q& G" g' Z8 e' ?6 g
9.6 An Exact SPICE (PSPICE) Model for Lossless, Coupled Lines 624
3 x; P$ R7 ?. d$ Q/ ~+ N5 T" t9.6.1 Computed versus Experimental Results for Wires 6339 s! O3 _. }1 e4 I  I6 ~
9.6.2 Computed versus Experimental Results for PCBs 640
3 _2 P  w9 d3 J' R9.7 Shielded Wires 6471 t+ v5 d( A& I! h6 Q; j9 ^* @
9.7.1 Per-Unit-Length Parameters 648
$ Z) t1 @! \3 R$ ]; t# j/ E9.7.2 Inductive and Capacitive Coupling 651
1 z1 q. L2 M8 @+ I; N6 f/ E$ S9.7.3 Effect of Shield Grounding 658
6 D+ @9 _% _! b2 z1 M9.7.4 Effect of Pigtails 667
! c3 j+ P: V$ p1 o5 \4 D8 _9.7.5 Effects of Multiple Shields 669
1 l! x6 S7 F4 ~/ H. G' q2 Z. F9.7.6 MTL Model Predictions 6754 a+ F( t" S3 f( J# [
9.8 Twisted Wires 677
& z4 `3 {( M. J2 s! `9.8.1 Per-Unit-Length Parameters 681
6 ~* r; ]" _6 {/ z5 g3 Q9.8.2 Inductive and Capacitive Coupling 685% }1 M4 J1 u8 S# d, f9 U
9.8.3 Effects of Twist 689! _6 d( {0 _+ {0 S  W; a
9.8.4 Effects of Balancing 6980 p5 t$ L5 g( u5 J
Problems 701
' S' h: y+ U; C  E8 L% @References 710
6 O5 h2 q& c& o4 Q10 Shielding 713
  D' f( A  R6 u! W4 z10.1 Shielding Effectiveness 718: R: J5 b! f4 {# {/ q3 V
10.2 Shielding Effectiveness: Far-Field Sources 721
7 f! f/ G9 V8 O' S; H& V10.2.1 Exact Solution 721  F$ V1 X( q1 F( D2 M
10.2.2 Approximate Solution 725
' \: \0 X3 F" X& A, N3 q10.2.2.1 Reflection Loss 725  T( z9 J- P/ h3 L; v! [
10.2.2.2 Absorption Loss 728
, c% R. T! X' d* e) X8 l" h' O10.2.2.3 Multiple-Reflection Loss 729
) _1 D- K7 O: s: a+ Y10.2.2.4 Total Loss 731
6 G0 N" [' [, `/ n8 a10.3 Shielding Effectiveness: Near-Field Sources 735& p6 P$ w4 O: G
10.3.1 Near Field versus Far Field 736
, A( C4 j' [& ^: ?9 t10.3.2 Electric Sources 740# G: X5 D4 @/ d  \; Z
10.3.3 Magnetic Sources 7400 I1 Z# D# r0 r/ S
10.4 Low-Frequency, Magnetic Field Shielding 742
' I8 v& k; g; f9 ~10.5 Effect of Apertures 745# o, J( C: T/ C* Y
Problems 750
; F0 C0 n! e! X% M, PReferences 751
) T; g' P. [6 [$ G. t( F- {1 g11 System Design for EMC 753
9 \; x! `7 r5 @, X$ K) d8 ?, M11.1 Changing the Way We Think about Electrical Phenomena 758  q4 x9 C! u" u2 r
11.1.1 Nonideal Behavior of Components and the
6 ]8 g$ \( a( |- UHidden Schematic 758
% _9 s% w" i7 p( h11.1.2 “Electrons Do Not Read Schematics” 763* H7 J# x2 I$ F5 J, x
xii CONTENTS8 V$ u: }) K+ k7 b, y
11.1.3 What Do We Mean by the Term “Shielding”? 766
* H; o% s6 G+ e! x% n& ?9 q" I11.2 What Do We Mean by the Term “Ground”? 768) ]( T2 u' r6 S
11.2.1 Safety Ground 771. o/ r  |! C( R$ ^+ Q0 J& Z
11.2.2 Signal Ground 7740 ]% h. B9 n( r3 q" x! k) O
11.2.3 Ground Bounce and Partial Inductance 775
( _, y. P# ~, g8 y8 J" W11.2.3.1 Partial Inductance of Wires 781* K9 O0 f9 x+ Q$ n6 U$ b
11.2.3.2 Partial Inductance of PCB Lands 786
% p, D' l7 e! G( K, G6 \11.2.4 Currents Return to Their Source on the Paths of Lowest
* }1 n- Y4 d) LImpedance 7878 p6 N+ N# Y" x& p9 w: x# B
11.2.5 Utilizing Mutual Inductance and Image Planes to Force- A4 ^3 B4 V* p8 w
Currents to Return on a Desired Path 793
0 `- _8 n2 f) l  o( i) X11.2.6 Single-Point Grounding, Multipoint Grounding, and, v" [1 x) z1 @- k6 V
Hybrid Grounding 7968 @* w9 d% q* c
11.2.7 Ground Loops and Subsystem Decoupling 802! E9 Z0 b" y! b& }9 ^
11.3 Printed Circuit Board (PCB) Design 8051 L" j* L8 j! {0 x
11.3.1 Component Selection 805  F  ~& M" C$ T9 S
11.3.2 Component Speed and Placement 806
2 L. C2 ]6 C) g! ^+ K" ]11.3.3 Cable I/O Placement and Filtering 808
5 y5 ?2 E# K& H9 G9 R- V( ~11.3.4 The Important Ground Grid 810
& t6 R& S. a: P3 g% n11.3.5 Power Distribution and Decoupling Capacitors 8121 e3 _9 ^& O% r) V" A2 y) J
11.3.6 Reduction of Loop Areas 822
' @; K& a' z# K' ]) ~11.3.7 Mixed-Signal PCB Partitioning 8236 V0 ], Q6 r# Y. l( Q" f
11.4 System Configuration and Design 827
1 Y- l1 J# H3 H11.4.1 System Enclosures 827. l8 ]0 t! E( a1 c; l, K& l
11.4.2 Power Line Filter Placement 828' q. y  m7 H$ D6 m+ s0 S  k6 X
11.4.3 Interconnection and Number of Printed
& b; q6 x- G( ], C+ l. sCircuit Boards 829
+ j2 K1 _. I) U! a$ ]11.4.4 Internal Cable Routing and Connector Placement 831  B: I/ z) i# }* P, \
11.4.5 PCB and Subsystem Placement 832+ v7 V* |! ]$ G
11.4.6 PCB and Subsystem Decoupling 832& \- O0 O; r6 ^
11.4.7 Motor Noise Suppression 8329 ~9 u' ~3 d  C3 z3 q; f' G2 q/ R
11.4.8 Electrostatic Discharge (ESD) 834
' @& G/ ]6 U+ ]7 J, r6 J. v% L11.5 Diagnostic Tools 847
, p* G! E# B: n* I  x) e5 l11.5.1 The concept of Dominant Effect in the Diagnosis of( O  S& o* s3 y6 v' c: {5 Z/ w
EMC Problems 850$ v* N$ z% T/ ~: Z; t* w
Problem 856
$ n7 `- G( \3 x2 a" e4 n. b" ?5 vReferences 857
9 f7 m- f! f1 G: ^" a1 r; p( ^Appendix A The Phasor Solution Method 859
5 X: R' B4 _2 t! @$ V7 |7 ^/ @2 B9 TA.1 Solving Differential Equations for Their Sinusoidal,
' S. E# Q  g/ W% K. k. aSteady-State Solution 859# J) G2 L/ S# F* Q: d
CONTENTS xiii
$ [' n/ R- ]1 lA.2 Solving Electric Circuits for Their Sinusoidal,
* ^% N8 c- I8 Q: o% `# Z" zSteady-State Response 8632 G6 p# P# J$ P4 ~' l- e
Problems 867
# D# \" e: |7 }8 I* P; UReferences 869
& k& h5 l+ t6 k9 A+ bAppendix B The Electromagnetic Field Equations and Waves 871
( D6 K6 m# O$ r- t  Q/ [. a! UB.1 Vector Analysis 872
' f( t: g. `: g. i8 fB.2 Maxwell’s Equations 881% J3 Q3 X- g4 X# O$ I
B.2.1 Faraday’s Law 881, ^# @$ Y3 T' E) ?: m  a3 B
B.2.2 Ampere’s Law 892
1 z4 f# y& J7 k, \4 F% \B.2.3 Gauss’ Laws 8986 C3 \4 W- [4 P, Q7 ~
B.2.4 Conservation of Charge 900
' `2 z+ e: R+ @1 UB.2.5 Constitutive Parameters of the Medium 900. L( o8 F5 @& g. L! b3 ?
B.3 Boundary Conditions 902
& i8 r5 Q8 d4 D7 `2 N5 P) ]; N6 PB.4 Sinusoidal Steady State 907- x* c$ g- u; u2 O
B.5 Power Flow 909
( ~) Q; q* P+ Z2 E6 g4 QB.6 Uniform Plane Waves 9093 K) d- _  i7 A2 l9 L. W
B.6.1 Lossless Media 9123 Q# \8 E( k, ?6 Z
B.6.2 Lossy Media 918# Y6 h& c0 j. C4 n6 b3 c
B.6.3 Power Flow 922
' }; f3 x6 {% qB.6.4 Conductors versus Dielectrics 923
& O7 _  K5 q2 }" fB.6.5 Skin Depth 925
0 I: G- `8 I+ d( d9 v* DB.7 Static (DC) Electromagnetic Field Relations—1 C/ h! g, A3 N9 b
a Special Case 927* K4 Q6 k# O6 L; `4 O! d7 q' i, M
B.7.1 Maxwell’s Equations for Static (DC) Fields 927# I0 u) b  X/ l, n6 T7 j
B.7.1.1 Range of Applicability for
3 Y6 p+ l4 B' ?, C, [Low-Frequency Fields 928
3 ~) z: z5 d0 Z) MB.7.2 Two-Dimensional Fields and Laplace’s
4 I* _/ Q3 }5 ~Equation 928
: S! J! s0 `$ F$ P. kProblems 930. n5 G% V; Q( n$ z  z, d1 R
References 9395 B2 ^7 d& s$ K
Appendix C Computer Codes for Calculating the Per-Unit-Length" y9 w+ E8 J* J$ T( z: e+ u
(PUL) Parameters and Crosstalk of Multiconductor
& X, ?/ _- v) T% Y$ }Transmission Lines 9419 S+ z- y  Y+ `/ g, z
C.1 WIDESEP.FOR for Computing the PUL
% [' I5 t# f( V; h5 X7 BParameter Matrices of Widely Spaced Wires 942
6 T! r9 u% Z- K4 p1 F/ W& w' k  s+ nC.2 RIBBON.FOR for Computing the PUL Parameter$ `7 d$ Z! S  Y
Matrices of Ribbon Cables 947* h$ m6 i! \! M
C.3 PCB.FOR for Computing the PUL Parameter( X- ?. b# |: \4 F; d! r
Matrices of Printed Circuit Boards 949
4 n# y7 ?" i8 C5 V2 X2 Z/ lxiv CONTENTS0 P/ C* R7 e, I; n
C.4 MSTRP.FOR for Computing the PUL Parameter/ n: G9 W+ g4 v5 ]" a# B0 Z& q
Matrices of Coupled Microstrip Lines 951
8 ~( r( i$ j/ Y& d) E; z! |1 A% FC.5 STRPLINE.FOR for Computing the PUL
2 ]  @" F1 P/ z1 h8 v2 W- iParameter Matrices of Coupled Striplines 952
; s3 D! r0 M! q$ f! o6 k/ @C.6 SPICEMTL.FOR for Computing a SPICE% ?& ^$ j& M. m2 G5 q# R
(PSPICE) Subcircuit Model of a Lossless,, Q0 R+ m6 q3 l3 ^! ]. B7 v( |
Multiconductor Transmission Line 954
- |4 q9 J/ r4 A) T8 P4 ~% [" W, QC.7 SPICELPI.FOR For Computing a SPICE (PSPICE); r% |: S+ X! n! l  t) R4 O9 g
Subcircuit of a Lumped-Pi Model of a Lossless,1 \5 G8 A6 o6 S+ C
Multiconductor Transmission Line 956- N* U/ X- S1 Y
Appendix D A SPICE (PSPICE) Tutorial 959, x2 E7 L2 K' m( r1 x! m
D.1 Creating the SPICE or PSPICE Program 960
* \* O: d9 Q& Q, P& l! dD.2 Circuit Description 961
/ W9 w6 Q0 X2 W3 T0 M& FD.3 Execution Statements 966. s4 G8 {% g. ?$ a* B$ W) \: h
D.4 Output Statements 968& i% a, @" q$ r, A7 k9 x
D.5 Examples 970+ j* Y/ ?5 P, R6 w# e0 ~8 P9 V
References 974: \8 U  u5 I  q# G) f8 Q
Index 9753 |6 ?: |3 V* m% v, G
: G; h( X) s/ ^6 f+ O- A

Wiley.Interscience.Introduction.to.Electromagnetic.Compatibility.Jan.2006-Clayto.rar

7.65 MB, 阅读权限: 40, 下载次数: 1, 下载积分: 威望 -5

该用户从未签到

2#
 楼主| 发表于 2018-12-26 15:55 | 只看该作者
3.Handbook of Electromagnetic Compatibility" Z% G1 _' P" V; i* @/ u- g
电磁兼容性手册
7 l" j! m5 l: {) o( j8 Y1995年出版" w" u: ?9 q' S0 }: X
作者Reinaldo Perez
' D% x; w# M% d5 u! v【无目录】

Handbook of Electromagnetic Compatibility, 1995.part1.rar

10.8 MB, 下载次数: 1, 下载积分: 威望 -5

Handbook of Electromagnetic Compatibility, 1995.part2.rar

10.77 MB, 下载次数: 1, 下载积分: 威望 -5

该用户从未签到

3#
 楼主| 发表于 2018-12-26 16:10 | 只看该作者
4.EMC for Product Designers# ~  W1 e& Q7 L* \  W- {, C' h. j
Tim Williams% i. l/ `6 L5 a% m8 Y0 s

  Y7 Q+ i. p: K/ o+ t6 k+ K" i/ s7 j, L+ b0 I2 ^$ b$ m- k: a# o3 ]' m

content.png (42.19 KB, 下载次数: 0)

content.png

EMC for Product Designers.rar

8.65 MB, 下载次数: 2, 下载积分: 威望 -5

您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-6-10 20:46 , Processed in 0.093750 second(s), 26 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表