|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
1.电磁兼容导论英文版5 B8 K9 x% n/ I. s Q& [' V2 Q+ A; {6 L
《电磁兼容导论》是机械工业出版社2006年出版的图书,由保罗编著。本书全面系统地讲述电碰兼容(EMC)的基本原理及其应用。
3 W) S u" P }+ e2 R( Y$ N2 l本书全面系统地讲述电碰兼容(EMC)的基本原理及其应用,包括EMC概论、电子系统的EMC要求、电磁场理论、传输线、天线、天件的非理想性能、信号谱、辐射发射和敏感度、传导发射和传导敏感度、串扰、屏蔽、静电放电、的系统设计等内容。本书讲述深入浅出,配合典型例证,实用性强。可作为高等院校相关专业电磁容课程教材,也可供EMC设计开发人员参考。- C7 y& [6 e( O7 _" V# h% [
3 z5 H! G) f0 t5 O# U* U* ~$ E! nContents+ T" g& v! {: ~( H
Preface xvii
* g' t& O/ K( h7 T. X. W5 x! h" o; i1 Introduction to Electromagnetic Compatibility (EMC) 1
1 l9 _. q( K3 t" a: a1.1 Aspects of EMC 3
+ ~' b: g- z0 S$ U1.2 History of EMC 10
! x% H) F2 p0 y1.3 Examples 12& X. H! s L$ m" E* N: p
1.4 Electrical Dimensions and Waves 143 ~$ v J3 O) s7 e' M
1.5 Decibels and Common EMC Units 23# {5 y5 ^; x# l
1.5.1 Power Loss in Cables 32
" Z/ D; T1 k' _1.5.2 Signal Source Specification 37/ k$ V7 ?; g5 n0 I) l0 `5 u8 w
Problems 43
" n6 v7 t+ ]- M2 o ?References 48( p! m z9 P: z
2 EMC Requirements for Electronic Systems 49& d3 z- a( }& k4 Z2 w$ d
2.1 Governmental Requirements 50
, b# t- J7 ~" ^9 ]" n8 \& B) R/ O: a2.1.1 Requirements for Commercial Products Marketed* G9 a: S5 x6 s4 C
in the United States 502 q4 D2 Z2 _$ K$ Q. F2 B0 y) \
2.1.2 Requirements for Commercial Products Marketed, J" ~, U( v. F* ^( O
outside the United States 55
! D* i8 ^' @7 M) ?& ]9 Z I2.1.3 Requirements for Military Products Marketed in the
& O; W0 F$ n8 E$ V! sUnited States 60
7 F! Z8 K- X# h! e; X3 R& c$ y2.1.4 Measurement of Emissions for Verification of Compliance 62
$ |4 Z; j: t1 Z/ L5 C. F2.1.4.1 Radiated Emissions 64# W1 ]$ S9 o8 p ?6 \# f! X
2.1.4.2 Conducted Emissions 67
: s" p4 r" j& B0 C8 W. r$ b4 b2.1.5 Typical Product Emissions 72
; z6 q i( B: s# a Q* N. N- Y2.1.6 A Simple Example to Illustrate the Difficulty in Meeting/ c) M$ _! ~% P; _
the Regulatory Limits 78- @8 W$ |5 d% ?1 L" }* I+ V
vii
* C5 ]: n% E j8 l$ `7 A, \( j/ p2.2 Additional Product Requirements 79
6 s* h. X2 k1 p2.2.1 Radiated Susceptibility (Immunity) 81
5 ~8 t/ J4 @3 `# }: r5 l4 k8 c2.2.2 Conducted Susceptibility (Immunity) 81
u: E2 Q; P. `0 _$ e2.2.3 Electrostatic Discharge (ESD) 81
' R6 v0 y$ |6 }* n) ?8 K3 P6 ?2.2.4 Requirements for Commercial Aircraft 82
. E- e1 w) S( j Y2 j% B, g2.2.5 Requirements for Commercial Vehicles 82; d: x% H' o1 j7 L/ ?1 X: H
2.3 Design Constraints for Products 82& Z: t( l8 _2 W. R
2.4 Advantages of EMC Design 844 d" y, ~- H2 u: v& U" s
Problems 86( _( ^/ s1 o' Z Y, ~# r
References 89
+ w5 s* s2 ?! H* k" n% r3 Signal Spectra—the Relationship between the Time Domain and2 z. X) u2 s1 L7 J8 G# M0 Y
the Frequency Domain 912 x- K8 A3 R O( I; A2 ~, s
3.1 Periodic Signals 91* o% B4 c' H5 U; X
3.1.1 The Fourier Series Representation of Periodic Signals 94
3 e( _0 q* V* R0 M$ g# o3.1.2 Response of Linear Systems to Periodic Input Signals 104
/ k, i: f1 f5 B* i/ x- }, b8 e% s3.1.3 Important Computational Techniques 111 g% b$ S9 e" h g2 _
3.2 Spectra of Digital Waveforms 118+ e2 Q& q5 {4 e( b* n
3.2.1 The Spectrum of Trapezoidal (Clock) Waveforms 118
/ V, H ]4 z! g! l& ^3 ^3.2.2 Spectral Bounds for Trapezoidal Waveforms 122' x9 p& ] p; d& b1 o& m2 S
3.2.2.1 Effect of Rise/Falltime on Spectral Content 123# n9 w% `: j: F: W
3.2.2.2 Bandwidth of Digital Waveforms 132
H6 t! }8 D* Q3.2.2.3 Effect of Repetition Rate and Duty Cycle 136: _4 W+ f9 x2 [- O& a+ ~8 W
3.2.2.4 Effect of Ringing (Undershoot/Overshoot) 137/ Y; F# r$ J- n; h
3.2.3 Use of Spectral Bounds in Computing Bounds on the
' j. @" a. {. n& f4 A5 zOutput Spectrum of a Linear System 1402 b5 Q1 x6 x* l5 k) ?8 @' X% n
3.3 Spectrum Analyzers 142
8 c8 T6 M- Q2 s: p- f3.3.1 Basic Principles 1424 o5 }* W/ J |% m. _
3.3.2 Peak versus Quasi-Peak versus Average 146' E1 \: r2 {" }' o6 J8 |
" S/ Y( v! Q$ C0 d7 M% @3.4 Representation of Nonperiodic Waveforms 148
$ h: H, u# s8 s) W& J! A" ]( w3.4.1 The Fourier Transform 148
* }) S2 `/ m9 q3.4.2 Response of Linear Systems to Nonperiodic Inputs 151
% M7 l' I3 t# e) e3.5 Representation of Random (Data) Signals 151
* J- I1 M3 ]7 y; Q9 l3.6 Use of SPICE (Pspice) In Fourier Analysis 1555 s* X& M/ {+ J" m
Problems 167
' {% E9 P9 t4 k& }" `( A L+ RReferences 175
0 w6 s( B& L* {4 Transmission Lines and Signal Integrity 177
4 k+ ?( m, W! F4 w7 l5 U4 p& R4.1 The Transmission-Line Equations 181
1 A: V" n5 v" z8 n( `; @; i4.2 The Per-Unit-Length Parameters 184" g% V! x0 K8 p# i+ u8 Q; _6 t& c
4.2.1 Wire-Type Structures 186; J: ` ^1 ^, i: o
viii CONTENTS
Z( V) X5 e6 g# O- h, N( V4.2.2 Printed Circuit Board (PCB) Structures 199, V C! |: r9 O. n! K. U& H9 j
4.3 The Time-Domain Solution 204
, K1 ^2 D7 K5 m# K$ {+ U- J
5 P. N0 m$ p' h; Z3 ^ G& R4 s4.3.1 Graphical Solutions 2043 w) m7 `5 F/ }1 x" L/ ?
4.3.2 The SPICE Model 218+ ~+ c) P1 U& }5 Z8 f8 u% X) X
4.4 High-Speed Digital Interconnects and Signal Integrity 2253 A. [- ]* K' X: p7 z7 e
4.4.1 Effect of Terminations on the Line Waveforms 230) U5 r- J5 o; J; T$ V9 v) t! ^
4.4.1.1 Effect of Capacitive Terminations 233
6 x3 x! w `, A5 g$ o! i7 D2 R4.4.1.2 Effect of Inductive Terminations 2368 Z* y" C( O( c
4.4.2 Matching Schemes for Signal Integrity 238
, c6 Y* }1 \" A; f' i! m4.4.3 When Does the Line Not Matter, i.e., When is Matching
) Z: S( `1 `3 h: jNot Required? 244
, y$ ?0 [7 ~8 w4.4.4 Effects of Line Discontinuities 247
( @5 n* y" t5 [2 {- O3 x% I% E4.5 Sinusoidal Excitation of the Line and the Phasor Solution 260( G+ H3 S! Q7 b. e4 l; n
4.5.1 Voltage and Current as Functions of Position 261
_8 V2 f: _8 A! L4 Q& r; ]- ]& g' w4.5.2 Power Flow 269
; q: B, [& d) s; y4.5.3 Inclusion of Losses 270; A6 o9 t& E0 Z) _* R, |5 N
4.5.4 Effect of Losses on Signal Integrity 273
; O) L7 K2 _. W0 U) i4.6 Lumped-Circuit Approximate Models 283 i4 s4 d* x9 k2 m0 y) Z1 o
Problems 287
% R2 Q: \1 J% s7 b7 z# OReferences 297
4 e- k# B! a Q) G& t5 Nonideal Behavior of Components 299
# u& b$ c" f( }+ a5.1 Wires 300
* j6 e* t4 ^& N c: o5.1.1 Resistance and Internal Inductance of Wires 304' k& z9 j2 a) z$ A; D: f2 N% h. F
5.1.2 External Inductance and Capacitance of Parallel Wires 308
7 v! i4 l" O! r$ O g+ `5.1.3 Lumped Equivalent Circuits of Parallel Wires 309
8 W" r7 @ d3 V8 d+ ?5 H% ?- h5.2 Printed Circuit Board (PCB) Lands 312
E* O' ^( G. |& {0 q$ M4 y5.3 Effect of Component Leads 3154 j0 G: y. F [! M8 x3 g. h
5.4 Resistors 317
6 m+ g4 s4 O/ p0 i- [8 Q3 O/ z5.5 Capacitors 325
! F! v: t2 j. |$ i) B5.6 Inductors 336
: Y6 t& S7 X8 t- n' O1 I5.7 Ferromagnetic Materials—Saturation and Frequency Response 340
; G. K; b! }2 p8 B I5.8 Ferrite Beads 343; A# I+ u0 J* P5 B2 q! U
5.9 Common-Mode Chokes 3460 X/ W3 w/ f7 M. d
5.10 Electromechanical Devices 352
$ j0 r( K% t1 H5.10.1 DC Motors 352
# Q$ |" s4 z6 c6 {0 I& I6 R) y5.10.2 Stepper Motors 355
/ E* y. d7 U" @: d" \5.10.3 AC Motors 355
8 W4 D/ ]7 z3 M( j$ N5.10.4 Solenoids 356; `& `4 D* S# Q& c% ~* G
5.11 Digital Circuit Devices 357
2 S8 N9 _8 u" J. O& g5.12 Effect of Component Variability 358
! \& s: p6 q# i5.13 Mechanical Switches 359) |1 O) d, @7 T
5.13.1 Arcing at Switch Contacts 3604 r* F7 Z' i2 V
CONTENTS ix
3 Z9 ?9 ?5 O% W$ \; K; l1 H* L8 e5.13.2 The Showering Arc 363+ m* w9 O/ b7 Q% K& B; Z
5.13.3 Arc Suppression 364' w3 j1 ]; Q9 W' s0 Q# l% {- o
Problems 3697 t3 s2 P+ N: @3 {, [/ t- z
References 3753 P, t; Q" I& \( p
6 Conducted Emissions and Susceptibility 377: V6 `4 i! I9 R$ X6 e4 M: ^
6.1 Measurement of Conducted Emissions 378
& N6 H. B, `$ c5 r1 N0 `6.1.1 The Line Impedance Stabilization Network (LISN) 379
. R- v, ^+ t. X. N3 z3 x' X \6.1.2 Common- and Differential-Mode Currents Again 381
: }$ ?9 d4 {$ x4 H9 F6.2 Power Supply Filters 385$ l) c0 J% s- x1 C' y/ s2 Y
6.2.1 Basic Properties of Filters 3856 r: E, \& W! @0 c
6.2.2 A Generic Power Supply Filter Topology 388# ?0 b% |+ I3 z/ P1 t. u) b9 n- `( j, r
6.2.3 Effect of Filter Elements on Common- and/ l3 p# y+ Y' _2 p3 q. ~3 o s
Differential-Mode Currents 390! E6 y6 ^$ Z0 ?" {' |9 R& F
6.2.4 Separation of Conducted Emissions into Commonand
. o1 O. w! z# ?# X# n& l1 \9 e7 \Differential-Mode Components for
+ w3 C. f7 E1 ODiagnostic Purposes 3961 W( B6 X4 \% o! [' h* Z$ H
6.3 Power Supplies 401- k0 |* Y. z4 o' H" p$ D
6.3.1 Linear Power Supplies 405, x+ m/ ^) H( d1 z) X
6.3.2 Switched-Mode Power Supplies (SMPS) 406
. @. f7 C) q2 x- |" {4 y6.3.3 Effect of Power Supply Components on Conducted( s0 U# K% D- e6 n
Emissions 409" S" H8 F8 p$ Y7 B8 d4 M6 i9 b
6.4 Power Supply and Filter Placement 414
& f2 ]+ t1 a( j6.5 Conducted Susceptibility 416
/ P. N5 B+ |9 U! z7 l: q0 u! hProblems 416
9 v4 W, f1 F' pReferences 419# d! b. c( `7 p+ S) A& S4 t8 S
7 Antennas 421# W" F; T9 R7 G& W+ q
7.1 Elemental Dipole Antennas 421
1 M5 V, H5 _- u6 ~ S, b# L7.1.1 The Electric (Hertzian) Dipole 4228 I/ n, E1 r/ i$ r
7.1.2 The Magnetic Dipole (Loop) 426 K) u5 S9 v7 |. u
7.2 The Half-Wave Dipole and Quarter-Wave Monopole Antennas 4295 R' y- P: Y# Z/ R
7.3 Antenna Arrays 440! @$ g5 ` h* A! q
7.4 Characterization of Antennas 448. u5 l' ~2 _! ?: o9 [
7.4.1 Directivity and Gain 448
* C# C+ Y; B) X* u- X: e7.4.2 Effective Aperture 454/ h! G% R+ w7 g# `
7.4.3 Antenna Factor 456. I$ }* P: A1 e
7.4.4 Effects of Balancing and Baluns 460
: r$ A9 H+ d! S* V6 y7 R" ]7.4.5 Impedance Matching and the Use of pads 463
: G9 u7 r' Z$ d0 ?- M/ r7.5 The Friis Transmission Equation 466
' R4 d# ?7 ?% Y4 j" q+ M. u1 E7.6 Effects of Reflections 4704 T; \# Z& x3 k: ?) c( m
7.6.1 The Method of Images 470+ G' o/ L) @4 q
x CONTENTS
4 q( H: h! D, M7.6.2 Normal Incidence of Uniform Plane Waves on Plane,+ y: c/ a7 ?6 B' X1 `: p
Material Boundaries 4706 O& X4 ^# R! m! ]( w* B
7.6.3 Multipath Effects 479. }8 N0 u+ b9 i" i& F# C
7.7 Broadband Measurment Antennas 486$ h2 \5 M( q3 b. L
7.7.1 The Biconical Antenna 487
) M7 ], ^. X/ ^/ [* y7.7.2 The Log-Periodic Antenna 490
5 y" y2 m1 l. y7 a9 J" {Problems 494' n w; N1 x3 f9 q, ?
References 501
B- R7 }7 K4 A W8 i8 Radiated Emissions and Susceptibility 503# Y5 T2 T- E" d) Y7 D) P% L
8.1 Simple Emission Models for Wires and PCB Lands 504) o, g/ g! K$ w* E/ J& L
8.1.1 Differential-Mode versus Common-Mode Currents 504
, l- K1 g3 a4 o+ ]2 Y! M7 `- F2 x8.1.2 Differential-Mode Current Emission Model 509
* |( }' U# {; D5 Y5 Y7 q8.1.3 Common-Mode Current Emission Model 5149 n* R0 W; O/ a" g* x& [0 ^6 v% p
8.1.4 Current Probes 518* Q: V6 \: c! P) J& a$ \
8.1.5 Experimental Results 523
4 G, V1 l+ l i# S8 r+ k8.2 Simple Susceptibility Models for Wires and PCB Lands 533( P/ p4 c1 A) r0 Q4 X2 Q! a7 p- |
8.2.1 Experimental Results 5443 r. O* I, B7 j; j0 D
8.2.2 Shielded Cables and SuRFace Transfer Impedance 5463 o7 J6 N! N# C* d7 h: V/ k
Problems 550' ?0 X% {" N7 n+ c
References 556% }4 H7 p+ s5 G% S2 {( X: }1 T
9 Crosstalk 559+ K/ o2 j' x& S" B6 F
9.1 Three-Conductor Transmission Lines and Crosstalk 560
2 Z, p; T* z7 }* Q; H+ l9.2 The Transmission-Line Equations for Lossless Lines 564: B j. k) u8 R" L+ G
9.3 The Per-Unit-Length Parameters 567/ x7 d" x& N9 q; t
9.3.1 Homogeneous versus Inhomogeneous Media 568
* T$ @$ @9 P, W# n6 X# V9.3.2 Wide-Separation Approximations for Wires 570
4 @8 Z* c6 q' c! v: ^9.3.3 Numerical Methods for Other Structures 580
) w' K7 a0 g5 T: K9.3.3.1 Wires with Dielectric Insulations! S8 b, g9 }- B, o/ a1 H
(Ribbon Cables) 5866 @: U$ r1 R0 C5 o
9.3.3.2 Rectangular Cross-Section Conductors5 b, ~# Q. m5 G
(PCB Lands) 590' q+ L# L) i! h+ l2 \
9.4 The Inductive–Capacitive Coupling Approximate Model 595+ [- k" j: @5 Q" {
9.4.1 Frequency-Domain Inductive-Capacitive Coupling
: b- e6 N. v( C* XModel 5992 M1 {7 w/ |% i5 F4 {2 b- Q+ E
9.4.1.1 Inclusion of Losses: Common-Impedance
8 h7 `4 c1 J- [* a! P( f, yCoupling 6017 j, b2 b# l( w& K# g- J
9.4.1.2 Experimental Results 604
/ g5 R& i: d% w0 c4 @9.4.2 Time-Domain Inductive–Capacitive Coupling Model 612, H& y! k3 M% [5 J* H+ ]; h
9.4.2.1 Inclusion of Losses: Common-Impedance Coupling 616: O7 y( U# ?: l ]
9.4.2.2 Experimental Results 617! J0 E) x( g0 z- [, v
CONTENTS xi
W( F7 o6 \+ {+ d9.5 Lumped-Circuit Approximate Models 624
6 G( F r( c4 s$ e; q! u. O9.6 An Exact SPICE (PSPICE) Model for Lossless, Coupled Lines 624
( R, ]$ o7 {4 a9.6.1 Computed versus Experimental Results for Wires 633
2 u, F. w, E5 A" r9.6.2 Computed versus Experimental Results for PCBs 640
8 y2 L6 c# [: k0 ?9 t" q9.7 Shielded Wires 647
; f; W2 Z& @ R; g) `9.7.1 Per-Unit-Length Parameters 6484 X2 q; B6 r9 l% C4 u& G
9.7.2 Inductive and Capacitive Coupling 651/ n- J8 u. f( n4 y+ `5 i' t
9.7.3 Effect of Shield Grounding 658" w( k! ~2 n0 Z
9.7.4 Effect of Pigtails 667$ v3 A0 C5 @3 ?
9.7.5 Effects of Multiple Shields 669
+ }3 e0 I* j7 P/ m5 P# [, X4 n- ?9.7.6 MTL Model Predictions 675
3 _" {, D/ x8 N& r5 z8 I9.8 Twisted Wires 677& `; x: K1 v0 q9 e! J+ M
9.8.1 Per-Unit-Length Parameters 6812 n% |; B; m5 B b2 {- w' K
9.8.2 Inductive and Capacitive Coupling 685' i! v& \2 m+ y* F0 |7 G% ]8 t, W
9.8.3 Effects of Twist 689) y* c) c, o: S
9.8.4 Effects of Balancing 698
7 Y2 n+ k: a( h( _% q B" CProblems 7019 t6 U( M9 @/ k$ v; H' G' r$ v: [: J* X
References 710
5 a0 }! U2 w7 I/ A* W10 Shielding 713
8 F* F) Z+ @+ l+ U! ~0 k9 t10.1 Shielding Effectiveness 718
9 |3 i0 U8 I) | ^. @4 y5 l8 R10.2 Shielding Effectiveness: Far-Field Sources 7211 U) v/ @1 _. ?) Y
10.2.1 Exact Solution 721
, V* Z. V" q' n0 N3 {6 ~' A: P9 y6 y10.2.2 Approximate Solution 725& g1 y( x2 S/ }$ E
10.2.2.1 Reflection Loss 725
. d9 K& K8 q+ ? ^2 d! k10.2.2.2 Absorption Loss 728" S, a1 n% m7 f# v) t% ^; q
10.2.2.3 Multiple-Reflection Loss 7291 e1 @# m6 d- X0 G& I2 f. _. N! L
10.2.2.4 Total Loss 731
/ q6 B% l0 S3 N10.3 Shielding Effectiveness: Near-Field Sources 735; v! ?1 w( E" f7 I5 x# ^6 ^
10.3.1 Near Field versus Far Field 736( s4 p0 C0 e* M2 f
10.3.2 Electric Sources 740
* ~( `* C) c1 T10.3.3 Magnetic Sources 740
4 \7 A: k0 n# s0 x* w10.4 Low-Frequency, Magnetic Field Shielding 742/ u; a" l5 {4 T' a8 k
10.5 Effect of Apertures 745
+ T& @0 f0 f' m. ]! p6 }0 m3 x% `Problems 750" f9 q$ ^2 M6 t) J: z" Q* x! M" Z
References 751
! L$ F/ ^) S+ q" ?% n11 System Design for EMC 753
: m6 k( k7 G4 q; n) i% k11.1 Changing the Way We Think about Electrical Phenomena 7586 `+ \# Z* h3 D; P/ n
11.1.1 Nonideal Behavior of Components and the
# G X) l2 p0 ~, {Hidden Schematic 7581 y2 }0 Z& |/ v! u1 e* P# ?
11.1.2 “Electrons Do Not Read Schematics” 7633 U5 t% ?, l! h# J$ E4 o- O: B
xii CONTENTS( L* A1 ^, W/ t9 q; `" f' p
11.1.3 What Do We Mean by the Term “Shielding”? 766
5 _" }5 l7 k3 _3 C11.2 What Do We Mean by the Term “Ground”? 768+ t3 K' K9 E$ {! k) Z5 {
11.2.1 Safety Ground 771* Z- |0 E- h- p* |5 u6 Y( I, v
11.2.2 Signal Ground 774
4 W/ _ N% [3 Y. T0 l1 S) c11.2.3 Ground Bounce and Partial Inductance 775
; C: w Q; J. j: v3 V11.2.3.1 Partial Inductance of Wires 7813 D! o* [3 F6 r; w) N
11.2.3.2 Partial Inductance of PCB Lands 786& u# y9 y* |; S5 { [
11.2.4 Currents Return to Their Source on the Paths of Lowest% @9 T9 D" Z) H/ T5 m
Impedance 787# E: q9 D' [3 I* f& a- q
11.2.5 Utilizing Mutual Inductance and Image Planes to Force: A$ |: a" H* ?0 k4 B, p
Currents to Return on a Desired Path 793( C2 _" |# ^7 {0 |8 y, L% f. t
11.2.6 Single-Point Grounding, Multipoint Grounding, and* _. n& ^3 H' I/ x: P3 H
Hybrid Grounding 796
) i; G# a5 `( N. H+ ^% N }+ `11.2.7 Ground Loops and Subsystem Decoupling 8024 K7 w) R7 v$ V7 v) E3 H
11.3 Printed Circuit Board (PCB) Design 8056 w9 ?* P/ I' m8 Y
11.3.1 Component Selection 805
! Q8 A2 z. y$ \+ b. G11.3.2 Component Speed and Placement 806
- u8 f) r) `1 A& Q0 H9 A11.3.3 Cable I/O Placement and Filtering 8089 G; V3 ?( U# |/ u4 L1 M1 p
11.3.4 The Important Ground Grid 8104 f& j( F" ?! A1 V% E
11.3.5 Power Distribution and Decoupling Capacitors 8129 H M, ?4 y7 |! d! Q$ W. d* |3 \
11.3.6 Reduction of Loop Areas 822# N& Y( R$ W9 x% S" a% ~( H8 A
11.3.7 Mixed-Signal PCB Partitioning 823
! d/ s; @1 M" h+ }- B! e11.4 System Configuration and Design 8279 M% G0 u5 d4 N2 K
11.4.1 System Enclosures 827* V# }% |# P/ f2 l* s' t
11.4.2 Power Line Filter Placement 828) e, g7 y- j) G! g- c; R
11.4.3 Interconnection and Number of Printed! p: [8 f4 {. q3 z. t0 ^
Circuit Boards 829% P$ T6 @8 u% X( z Q: W: j6 F
11.4.4 Internal Cable Routing and Connector Placement 831
$ k7 i8 Y' S& a& J9 L& {) D11.4.5 PCB and Subsystem Placement 832
- h% G8 H0 v: N& h1 ^+ E11.4.6 PCB and Subsystem Decoupling 832
\* u9 O8 C/ C' t3 s/ E3 |* z$ r3 n N11.4.7 Motor Noise Suppression 832
; p+ B% s g, a7 y5 M% e11.4.8 Electrostatic Discharge (ESD) 834
& g, W: A i3 E# v# s11.5 Diagnostic Tools 847
! Q; Y" P' f0 E* a. p( n7 ~- C7 V11.5.1 The concept of Dominant Effect in the Diagnosis of
4 ~2 e" W! `) }3 Q8 K) qEMC Problems 8503 }8 E" m* T' h: H$ M- a
Problem 856
* g, Y2 Y+ U6 d5 i" [9 l2 `References 857( [" n+ n7 L& k" b$ z# C! E/ P
Appendix A The Phasor Solution Method 859$ t9 h' w" Z& B- ?$ D0 V/ b+ e
A.1 Solving Differential Equations for Their Sinusoidal,& U8 G7 } h. T/ r
Steady-State Solution 859( t9 B2 C# c0 m- V5 i6 t
CONTENTS xiii; ^5 i2 T& h% x( o% `8 c$ `# L1 {
A.2 Solving Electric Circuits for Their Sinusoidal,( l; p T7 e% O% t
Steady-State Response 863+ u2 b4 G1 r, U
Problems 8675 G/ s, y ]7 t5 T
References 869
k4 `( \; L5 G: Q" t# k0 W3 SAppendix B The Electromagnetic Field Equations and Waves 871$ a9 _% P9 f) P& O) v. X" D, d+ `8 y
B.1 Vector Analysis 8721 p0 [' r% o6 f) ^- Y
B.2 Maxwell’s Equations 881" B9 [! X& G* x" \. `# h. n
B.2.1 Faraday’s Law 881
. ]; m5 H. P8 D/ i1 BB.2.2 Ampere’s Law 892
b/ L2 M; o2 K3 t& W0 VB.2.3 Gauss’ Laws 898' r* U1 H$ C ?0 P8 G
B.2.4 Conservation of Charge 9006 W1 k; G; ^; Y) M
B.2.5 Constitutive Parameters of the Medium 900! u5 h" g/ y8 q! m* _7 I6 Y: }
B.3 Boundary Conditions 9020 {1 | B- W E; a) p
B.4 Sinusoidal Steady State 9076 s& v6 ?: `) O, s E
B.5 Power Flow 9096 h, R3 a5 a6 e7 J+ o
B.6 Uniform Plane Waves 909# j8 y0 E1 {' a: `+ d0 t3 `
B.6.1 Lossless Media 912
5 w+ J( M5 Y- R# MB.6.2 Lossy Media 918! d7 ~9 G9 R" r# {8 P( \
B.6.3 Power Flow 922
4 U& y; Y: Z+ L" F. u; Z3 O4 |B.6.4 Conductors versus Dielectrics 923
: p, |/ E3 p# b, Q( V0 o0 Q* JB.6.5 Skin Depth 925# y- b* j: j$ K. z# H
B.7 Static (DC) Electromagnetic Field Relations—
4 E( s; m- R9 za Special Case 9271 k! [+ p {4 F8 J- r8 f0 Y
B.7.1 Maxwell’s Equations for Static (DC) Fields 927
6 I' B+ l' r6 N8 o5 dB.7.1.1 Range of Applicability for
9 J6 Y* j& Z3 ?/ b' }4 g4 o4 l1 ~Low-Frequency Fields 928
5 T1 A: [3 l4 g9 f3 v: A, EB.7.2 Two-Dimensional Fields and Laplace’s
' h8 Q; o$ a, t" p; P& O$ dEquation 928/ g O5 k9 J8 S% Q& \! K
Problems 930+ i3 `9 {- m# h! J" v. X K3 g: q
References 939: ~2 ^$ j6 H- n& ^$ ^
Appendix C Computer Codes for Calculating the Per-Unit-Length0 s/ |" T. `3 T9 n4 r! }1 v# K
(PUL) Parameters and Crosstalk of Multiconductor* v- Q4 Y3 m" g+ ?" v) B! m
Transmission Lines 9411 k; ]3 W5 d4 D3 N; ]1 J; K
C.1 WIDESEP.FOR for Computing the PUL, }3 v/ g/ }& L: D- d$ k$ |
Parameter Matrices of Widely Spaced Wires 9420 ]7 B2 ~2 n! R0 U
C.2 RIBBON.FOR for Computing the PUL Parameter. U0 Q9 w& z/ X6 p
Matrices of Ribbon Cables 947
- U4 y! n6 S) \6 r. g6 Y5 MC.3 PCB.FOR for Computing the PUL Parameter W) Q- [2 o1 }$ `" _7 C
Matrices of Printed Circuit Boards 949
( q* _# O6 c1 G* T: ?xiv CONTENTS: _0 `2 u8 T1 Q/ \
C.4 MSTRP.FOR for Computing the PUL Parameter
( @8 J& e% ~& Q* w3 GMatrices of Coupled Microstrip Lines 951) C2 j3 B) j3 E1 `" F) ~( Y
C.5 STRPLINE.FOR for Computing the PUL/ E: }$ `- \5 M' L0 z: E+ o
Parameter Matrices of Coupled Striplines 952! v0 d4 ]: i' V. F9 t( ?- I
C.6 SPICEMTL.FOR for Computing a SPICE
, O2 J9 f' }& _" F0 Z" o, Q2 M(PSPICE) Subcircuit Model of a Lossless,
' p- Q# Q$ }. q8 n$ y, ZMulticonductor Transmission Line 9543 x2 V# r: r# F7 p) T2 ^
C.7 SPICELPI.FOR For Computing a SPICE (PSPICE)
! ~# J: U# |' W) |; S9 WSubcircuit of a Lumped-Pi Model of a Lossless,
. Q0 w$ x, q; k; k% EMulticonductor Transmission Line 956, R* h& R; {! s9 O9 H, K7 f
Appendix D A SPICE (PSPICE) Tutorial 959
4 S6 L, h. G. A: e' F3 N! S( VD.1 Creating the SPICE or PSPICE Program 960 M+ ]8 e$ \4 w `# d* g3 q
D.2 Circuit Description 961
3 T$ u# O: U+ u. TD.3 Execution Statements 966* l- q5 L1 E2 z# D8 Z$ O# ?
D.4 Output Statements 968
5 b3 O! [! E: S6 v. s6 S4 V& v" sD.5 Examples 970' j7 c1 H5 k/ V
References 974' S6 y' P" o# J3 `
Index 975
+ g* X) C6 {* f$ l3 h9 k" Q% O* ?# U9 z R$ ~
|
|