|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
1.电磁兼容导论英文版
+ E5 V4 V% a$ c3 ~《电磁兼容导论》是机械工业出版社2006年出版的图书,由保罗编著。本书全面系统地讲述电碰兼容(EMC)的基本原理及其应用。
3 d; C; B$ Z7 D4 l5 ]; @7 `本书全面系统地讲述电碰兼容(EMC)的基本原理及其应用,包括EMC概论、电子系统的EMC要求、电磁场理论、传输线、天线、天件的非理想性能、信号谱、辐射发射和敏感度、传导发射和传导敏感度、串扰、屏蔽、静电放电、的系统设计等内容。本书讲述深入浅出,配合典型例证,实用性强。可作为高等院校相关专业电磁容课程教材,也可供EMC设计开发人员参考。
3 r) s7 O9 Q2 e) _0 s' ^3 L& j/ N% X2 s0 {1 l
Contents/ E4 N# ]# A/ S, n: }7 K9 N
Preface xvii- M8 ?% a" O5 {% V4 k% i
1 Introduction to Electromagnetic Compatibility (EMC) 1
+ g% O+ q V# r" h6 V$ d1.1 Aspects of EMC 3 G9 q" V3 M. z$ R( H0 [( q3 @
1.2 History of EMC 10
4 u3 C# K" A$ ^9 ~: `7 v# S3 \9 Z1 M1.3 Examples 12( N/ B2 o( H1 j4 Y1 K1 I- p
1.4 Electrical Dimensions and Waves 14
. z- M! @. s. j* _- @1.5 Decibels and Common EMC Units 23$ x8 V+ u7 r& {
1.5.1 Power Loss in Cables 32- X5 o. G- ~, o9 s1 ?# v8 h
1.5.2 Signal Source Specification 37
5 U2 q- R) t8 p* a$ _0 AProblems 439 [0 t9 G [+ Y; j+ F0 V4 v Q0 |: W
References 48
+ o+ }# a) K' W+ m) f5 J6 \2 EMC Requirements for Electronic Systems 49: R, U2 V Y8 e2 ^2 G5 _* A
2.1 Governmental Requirements 50
l6 J) m: j- j2.1.1 Requirements for Commercial Products Marketed% T$ b6 \! m: ~6 E, j
in the United States 50+ K% s$ S9 S/ S# Z4 [
2.1.2 Requirements for Commercial Products Marketed! @, @8 k" S# m$ v
outside the United States 55
( J3 U% F6 B0 s2.1.3 Requirements for Military Products Marketed in the
3 w* X3 j! r" IUnited States 60
- b$ d9 }; U) t2 O2.1.4 Measurement of Emissions for Verification of Compliance 62
! \5 H1 E6 a3 `* H9 }8 O2.1.4.1 Radiated Emissions 64( s( x2 W7 A% C5 M" i
2.1.4.2 Conducted Emissions 673 u. r+ B* G9 G1 I1 h
2.1.5 Typical Product Emissions 72/ S( N4 N6 I2 Y2 w1 h
2.1.6 A Simple Example to Illustrate the Difficulty in Meeting7 J3 W, {2 l* I0 d$ R
the Regulatory Limits 780 X2 ]/ m( \# y8 s/ e# t' F$ H
vii
. x% O; j/ C) g0 O3 L2.2 Additional Product Requirements 79* X+ n4 ^; Y" f# L" p/ ?. n
2.2.1 Radiated Susceptibility (Immunity) 81
0 y% U# l( p, Z, r. S7 ?+ X* [2.2.2 Conducted Susceptibility (Immunity) 81+ E5 R3 m+ X9 B$ \7 i1 C
2.2.3 Electrostatic Discharge (ESD) 81+ w' k2 I* q5 ^8 T. [6 I% i* t
2.2.4 Requirements for Commercial Aircraft 82
0 O, w& S. _ ?: L9 p* G2.2.5 Requirements for Commercial Vehicles 82
0 [, b! |( Q' \, Z, Z, r3 e2.3 Design Constraints for Products 82* _7 V- u( p9 v% B+ R$ x3 j
2.4 Advantages of EMC Design 84
2 j; |/ s; C4 c6 V NProblems 86
* |1 k8 N& D1 |* r# H5 h* @" lReferences 896 w; f v6 }# A: m) T" n* Q
3 Signal Spectra—the Relationship between the Time Domain and2 c7 k9 n% p& `* U9 y* r
the Frequency Domain 91: S& e1 P2 j$ g) w" h
3.1 Periodic Signals 91
, [5 ?; y3 `9 v$ N3.1.1 The Fourier Series Representation of Periodic Signals 94
& Z$ z" z% f. h3.1.2 Response of Linear Systems to Periodic Input Signals 104* X, q' r# w H
3.1.3 Important Computational Techniques 111
3 [- V q! a: B" K& w# ~3.2 Spectra of Digital Waveforms 118: {$ ?9 a! Z! E8 j1 ?
3.2.1 The Spectrum of Trapezoidal (Clock) Waveforms 1182 M! `: m3 [' t6 A2 v/ E
3.2.2 Spectral Bounds for Trapezoidal Waveforms 122/ L8 r) @1 E( T+ ?9 f% `& A
3.2.2.1 Effect of Rise/Falltime on Spectral Content 1234 t5 C8 P5 e& Y8 v& E- ?
3.2.2.2 Bandwidth of Digital Waveforms 1321 `- S$ Z! ?2 O
3.2.2.3 Effect of Repetition Rate and Duty Cycle 136/ H9 `5 W; P2 {- P% i& @) U9 t- ^: f: C
3.2.2.4 Effect of Ringing (Undershoot/Overshoot) 137
) s8 r( H, K3 L2 C! G z3.2.3 Use of Spectral Bounds in Computing Bounds on the
3 ]+ x5 x6 T9 `! {% NOutput Spectrum of a Linear System 140
9 u/ l2 D4 A) B" X0 V3.3 Spectrum Analyzers 142
" Y7 g; N2 | e, [# k3.3.1 Basic Principles 142
' z4 x; M8 f; C* T7 h8 C3.3.2 Peak versus Quasi-Peak versus Average 146% G+ [# A, p) _$ u
9 T+ M6 a) {9 W! v9 z3 E8 I
3.4 Representation of Nonperiodic Waveforms 1484 s6 Z- s- e' y$ ~8 ^
3.4.1 The Fourier Transform 148
4 {6 B8 {0 | [: _& ^! X. Y. @ w" ?# K( s3.4.2 Response of Linear Systems to Nonperiodic Inputs 151
2 R# i. X& R4 C& f3.5 Representation of Random (Data) Signals 151
$ Y% K ^& w& o2 h" b/ n6 k3.6 Use of SPICE (Pspice) In Fourier Analysis 155
, Z$ y8 |) K/ s: }( dProblems 167
0 m* R2 F* S2 D+ mReferences 175* z/ S! u1 O" q$ W ]* N4 x0 M
4 Transmission Lines and Signal Integrity 177
8 y S% U4 U! M0 O/ e4.1 The Transmission-Line Equations 181
% E- u2 v+ s- X5 b+ N4.2 The Per-Unit-Length Parameters 184
8 f% X. _2 f8 k$ a5 i: e$ C6 z4.2.1 Wire-Type Structures 1866 A7 y" s: q! L. U8 o/ Y) f
viii CONTENTS
1 U" r8 t! h5 {- n( ?4.2.2 Printed Circuit Board (PCB) Structures 199
8 c7 x- B6 {6 @4.3 The Time-Domain Solution 204
9 _, `5 [# l) }& M# \
+ _5 J8 i% I) v2 B$ Z4.3.1 Graphical Solutions 2040 w3 x/ x8 f, u
4.3.2 The SPICE Model 2180 K% u% E8 f2 n4 G
4.4 High-Speed Digital Interconnects and Signal Integrity 2255 `4 t2 {* h& @8 x
4.4.1 Effect of Terminations on the Line Waveforms 230- i0 Q- P9 V$ m
4.4.1.1 Effect of Capacitive Terminations 233
4 T6 P6 Q% n$ T2 g4.4.1.2 Effect of Inductive Terminations 236, c* _: P4 E- H( s: G# D3 f6 O
4.4.2 Matching Schemes for Signal Integrity 238, ~) g+ N! i( C1 p; h) ^
4.4.3 When Does the Line Not Matter, i.e., When is Matching) ?" G, K% y+ _: c2 _5 }& F
Not Required? 244; M! m" G7 b9 _' z( c
4.4.4 Effects of Line Discontinuities 247
5 A7 n( x( z( U, A9 A% L+ S4.5 Sinusoidal Excitation of the Line and the Phasor Solution 260
( f& ]# I! T0 h" |4.5.1 Voltage and Current as Functions of Position 2617 t1 S0 `* H* s! ?0 V
4.5.2 Power Flow 269
4 I. H2 @# g' h/ ~7 E) d4.5.3 Inclusion of Losses 270 `; f* a0 S8 b+ R) t/ C0 u8 y
4.5.4 Effect of Losses on Signal Integrity 273" V' E. ]. h D' ^$ j3 r4 j& T, d
4.6 Lumped-Circuit Approximate Models 283: K' r3 g) ^& q
Problems 2872 Q5 m# Q0 b. R* {
References 297* v9 ?8 U" F' w, V) a8 O( p
5 Nonideal Behavior of Components 299
* c) s/ t# Z q5.1 Wires 3002 V$ E- N# V# _$ O7 J- ]5 `
5.1.1 Resistance and Internal Inductance of Wires 304
2 j+ H6 C) F8 w5.1.2 External Inductance and Capacitance of Parallel Wires 308/ P' u! `6 D, {1 Z# I: ~: K
5.1.3 Lumped Equivalent Circuits of Parallel Wires 309
0 q( {4 ^1 L7 V8 N5.2 Printed Circuit Board (PCB) Lands 3126 `! \; a" q( E& F5 s
5.3 Effect of Component Leads 315
" w- h( `! o) r* b8 D& R5.4 Resistors 317: g2 C3 \8 Q; i9 W5 I# D
5.5 Capacitors 325
0 v! N* G! A! d) M5.6 Inductors 3360 Q: u1 F2 F2 b D6 }$ P4 J( b
5.7 Ferromagnetic Materials—Saturation and Frequency Response 340
9 n! J& \; F5 i! P' T, x5 C5.8 Ferrite Beads 343
0 h; W% N+ {& n, N5.9 Common-Mode Chokes 3467 @! {& z0 N3 G/ O4 F1 h9 S& z$ w
5.10 Electromechanical Devices 352" Z! z' T' _5 j# c. H
5.10.1 DC Motors 352
+ ?$ o! `9 T2 `2 K5.10.2 Stepper Motors 355: ^. }- w& o! {
5.10.3 AC Motors 355
3 i6 E7 B. N( `! J( n7 ]5.10.4 Solenoids 356
1 |$ W M3 Q5 Z6 b5.11 Digital Circuit Devices 357+ S8 P C6 ?4 s! k) R
5.12 Effect of Component Variability 358% q J% S% A6 ^7 a
5.13 Mechanical Switches 3593 ?5 ^1 w9 x1 `/ f% D( O1 L6 i* z
5.13.1 Arcing at Switch Contacts 360- J) l% E4 {2 d) U& X v1 I1 q
CONTENTS ix1 ]: h6 N) Q/ I. t& E
5.13.2 The Showering Arc 3632 M( N8 k6 L9 T6 }
5.13.3 Arc Suppression 364$ u' W" _+ Y* d1 r9 m7 Z! m
Problems 369: y) J7 A% q6 _5 w+ L o9 X
References 3756 k1 y( _; d J+ ?! w) {9 u
6 Conducted Emissions and Susceptibility 377
* l6 q7 {; q2 U/ O: e6.1 Measurement of Conducted Emissions 3784 @' i6 h' W3 u1 l" S+ y
6.1.1 The Line Impedance Stabilization Network (LISN) 379
$ o- c6 g' p& O' X9 c7 s6.1.2 Common- and Differential-Mode Currents Again 381$ ~( i ~, u; ?' h3 K0 \" a
6.2 Power Supply Filters 385/ N- y7 g& h% X7 N: W! R5 f5 u
6.2.1 Basic Properties of Filters 385
: r- d$ Z O8 h' p1 @/ q- N6.2.2 A Generic Power Supply Filter Topology 388
+ _6 _/ R. w }* l6.2.3 Effect of Filter Elements on Common- and
1 R' c' p% [4 z0 VDifferential-Mode Currents 3900 Y5 m' a8 ~" Z S G9 O
6.2.4 Separation of Conducted Emissions into Commonand8 ]" k9 Z4 t6 M
Differential-Mode Components for
; X- o. J& s. {+ L; Z" N1 x. @Diagnostic Purposes 396
& c' k2 O }) n/ t6 ?5 F7 |' m6.3 Power Supplies 401" a w0 [! `, B6 y/ x# J0 |, l$ p
6.3.1 Linear Power Supplies 405
( ]- \2 `2 T1 \7 t# ?6 O! |% q6.3.2 Switched-Mode Power Supplies (SMPS) 4061 G) F! J* k4 P
6.3.3 Effect of Power Supply Components on Conducted
+ I- x4 N$ }6 U% E* A/ |% W1 NEmissions 409
1 Q5 m3 E5 |' ]$ Q8 j' \6.4 Power Supply and Filter Placement 414) c/ w# c5 ?! ?: \' K; c
6.5 Conducted Susceptibility 4160 T4 i0 j$ h9 [; ~+ C0 z
Problems 4166 n s" Y" k# e- Z2 J
References 419. ?( I, M2 Z- D1 P5 }" k) b
7 Antennas 421
0 ]. B& m, Q7 d7.1 Elemental Dipole Antennas 421
! Q1 W! p5 H7 p/ d* }( ~* k7.1.1 The Electric (Hertzian) Dipole 4228 _+ S! }# @1 g; e& c- z& x7 _# ?
7.1.2 The Magnetic Dipole (Loop) 426
% L* p1 r; q, d- z/ l7.2 The Half-Wave Dipole and Quarter-Wave Monopole Antennas 4299 p* U4 `* N- g
7.3 Antenna Arrays 440+ `1 g; M! q5 m! D7 l& m
7.4 Characterization of Antennas 448. B- o0 h' j* M4 T, y+ g! v7 o
7.4.1 Directivity and Gain 448
7 L/ j: o4 X4 V8 r6 w7.4.2 Effective Aperture 454
' i& E. d: [! y' n7.4.3 Antenna Factor 456
' l/ h- e9 `! Q+ N7.4.4 Effects of Balancing and Baluns 460
; z6 j, Y- W+ h- |: a ?) M7.4.5 Impedance Matching and the Use of pads 463
: U# S0 {1 [. ~5 M5 _ d3 e7.5 The Friis Transmission Equation 4661 r* t6 N1 A# X4 C+ a0 V
7.6 Effects of Reflections 470/ y: @; F9 } `8 n. R% N- J q2 f! f
7.6.1 The Method of Images 470; ~2 e" A1 a, n# @
x CONTENTS. t& c R7 ~: E/ i3 K$ `
7.6.2 Normal Incidence of Uniform Plane Waves on Plane,9 O# j$ Y4 g' @4 c! ~9 m- K$ q ?
Material Boundaries 470
" J1 Q+ f/ m/ O7.6.3 Multipath Effects 479
% Z4 ] O( v: E, p- @9 n2 K7.7 Broadband Measurment Antennas 486) S. m: F: ~# Y* G) H2 f& @
7.7.1 The Biconical Antenna 487: S9 @# Q* B! X, a+ D$ y& F0 h
7.7.2 The Log-Periodic Antenna 490
7 @- q/ B( {/ h2 q/ ]) Q6 mProblems 494
! N/ s) v ?0 E* X, I N* |References 501
4 `2 m5 S' z* y z8 I% S8 Radiated Emissions and Susceptibility 503: x7 [! q6 X1 B- R7 C
8.1 Simple Emission Models for Wires and PCB Lands 504: ^5 @& O, |) V( X" M4 G- ?
8.1.1 Differential-Mode versus Common-Mode Currents 504
8 u4 ?) V* U5 @8.1.2 Differential-Mode Current Emission Model 509% ^' i9 n% ^- u4 e, J
8.1.3 Common-Mode Current Emission Model 5142 G- k' s" S6 S% i# x t5 c# G# n
8.1.4 Current Probes 518
1 `# {; x$ i( M$ ? R8.1.5 Experimental Results 523
4 P7 Q) h1 p- ~" G& F7 |8.2 Simple Susceptibility Models for Wires and PCB Lands 533) w1 G& e4 M; m% Y, {4 o" |. P
8.2.1 Experimental Results 544
8 |! L7 I. {8 _8.2.2 Shielded Cables and SuRFace Transfer Impedance 546
: k1 Y7 q3 e/ K, g. x' \, bProblems 550
2 V% I. u4 t9 y! O& RReferences 556
. L3 b! [6 y! E0 ?5 R9 Crosstalk 559% v) t m( T# o
9.1 Three-Conductor Transmission Lines and Crosstalk 560, g5 I7 j& e/ x# \4 K
9.2 The Transmission-Line Equations for Lossless Lines 564+ A8 ?7 r$ ^8 b
9.3 The Per-Unit-Length Parameters 567
+ J( M# f% U. a0 s7 ]9.3.1 Homogeneous versus Inhomogeneous Media 568
( c; x" g( M* b, W9.3.2 Wide-Separation Approximations for Wires 5702 @ B0 B% r5 B2 D" U
9.3.3 Numerical Methods for Other Structures 580
& H5 I+ I1 m4 H; a7 m9.3.3.1 Wires with Dielectric Insulations& Q4 u/ D! ]6 S) m- F0 u2 w
(Ribbon Cables) 5866 P& f* H3 F8 m1 ]/ ~" o7 C" c
9.3.3.2 Rectangular Cross-Section Conductors
) W7 J! B( T; _+ `(PCB Lands) 5903 o: r& Z1 X: i$ G y- ^) E
9.4 The Inductive–Capacitive Coupling Approximate Model 595
8 w; U) A' s; d+ D9.4.1 Frequency-Domain Inductive-Capacitive Coupling' t/ a5 w+ Z. C% h7 |4 x. m$ E
Model 599
& e4 E/ G$ [5 M7 P* s: m9.4.1.1 Inclusion of Losses: Common-Impedance
$ P& w1 l7 W9 p4 P6 L8 I* R/ ]8 g }Coupling 601
6 k: Q! L, F/ r5 f! ]" Z9.4.1.2 Experimental Results 6047 x0 [/ _1 l% O
9.4.2 Time-Domain Inductive–Capacitive Coupling Model 612
& C0 h7 V* C" R3 f9 s3 V1 s9.4.2.1 Inclusion of Losses: Common-Impedance Coupling 616/ m( G- R i' @
9.4.2.2 Experimental Results 6177 j0 F2 B% i0 Y- T* W
CONTENTS xi
0 z; g1 R6 D; n. j6 i6 w9.5 Lumped-Circuit Approximate Models 624
5 D( c& p1 F* ~9.6 An Exact SPICE (PSPICE) Model for Lossless, Coupled Lines 624
+ ]; H' |3 Z0 d3 M: {" s, E+ J9.6.1 Computed versus Experimental Results for Wires 633( z4 X, [, F, F6 h* T, m; x
9.6.2 Computed versus Experimental Results for PCBs 640! J2 m. k8 [+ N4 l
9.7 Shielded Wires 647; v3 _# P0 l# X' N/ v' }
9.7.1 Per-Unit-Length Parameters 648
; _) w, c8 p8 c9.7.2 Inductive and Capacitive Coupling 6511 P4 B2 |5 i! m
9.7.3 Effect of Shield Grounding 658( |- u4 Z9 |+ D5 ~
9.7.4 Effect of Pigtails 667
: y. `* ?) {+ ] ?- {4 X9.7.5 Effects of Multiple Shields 669
$ m7 P! J u. B/ q9.7.6 MTL Model Predictions 675; L9 J2 S& p) D% u7 e6 T
9.8 Twisted Wires 677/ e( q8 |7 K2 f* m8 ?
9.8.1 Per-Unit-Length Parameters 681# t. t- _+ n* |( g. s
9.8.2 Inductive and Capacitive Coupling 685! |8 B. S- P2 G5 A9 f _0 S
9.8.3 Effects of Twist 6892 E/ H+ K, k/ B
9.8.4 Effects of Balancing 698
8 o$ n/ D- U; f wProblems 701# s! v& q z' R$ ^8 y
References 710
" s' N% d' i! @3 E$ E# Q0 [10 Shielding 713
# ?! h K4 u7 F5 g5 A1 m10.1 Shielding Effectiveness 7187 N2 h( L; a% s5 \
10.2 Shielding Effectiveness: Far-Field Sources 721
: n, P2 a( e5 q10.2.1 Exact Solution 7214 K! C, [( a4 U9 m% ^
10.2.2 Approximate Solution 725/ \3 u" Z: _( y4 y& f$ W5 F( U! c
10.2.2.1 Reflection Loss 725
& {1 T! o+ O' l( x; W9 b S* P10.2.2.2 Absorption Loss 7286 f/ {3 L4 Y( F. t, K' }+ \
10.2.2.3 Multiple-Reflection Loss 729
6 i% i( l8 K8 w0 l10.2.2.4 Total Loss 7315 a' a0 `5 e% ^: B1 Y; G+ E
10.3 Shielding Effectiveness: Near-Field Sources 735
( K' D. H5 @1 V) y! R10.3.1 Near Field versus Far Field 736
2 n2 l! J" {. b- y* y0 Q10.3.2 Electric Sources 740
6 y" N3 N! P/ K. h. M. C! c10.3.3 Magnetic Sources 740# [- p) `! ?1 ], G" a
10.4 Low-Frequency, Magnetic Field Shielding 742
) c0 l$ n3 u4 Q5 V2 J" P10.5 Effect of Apertures 745$ y/ h. ~6 F+ b" F% ~' f! @
Problems 750
. h" O+ f- P8 I; P% mReferences 751
* ?( `) h+ R* ~( Z0 i- f8 Z11 System Design for EMC 753# w2 U+ D) ^: S+ a
11.1 Changing the Way We Think about Electrical Phenomena 758' w' j* R z6 \; t
11.1.1 Nonideal Behavior of Components and the
Q% p/ T3 o& ~7 l/ ~* HHidden Schematic 758" h& N6 W9 t1 P( o
11.1.2 “Electrons Do Not Read Schematics” 7633 h, z( f+ }' w: U+ ^
xii CONTENTS
- G/ {/ y b& l k4 k1 Q11.1.3 What Do We Mean by the Term “Shielding”? 766
" q, W9 R) [: T. ~7 f! E11.2 What Do We Mean by the Term “Ground”? 7683 T P* Y) }# {' J3 r- {" b; T
11.2.1 Safety Ground 771' d0 [( f- @6 c- Q, ^4 U* L5 {! t
11.2.2 Signal Ground 7743 l0 p& @4 r) z: j2 f3 X
11.2.3 Ground Bounce and Partial Inductance 775+ c% e: j" D( v5 J/ }6 [
11.2.3.1 Partial Inductance of Wires 781
7 s: t. H9 }- g" o11.2.3.2 Partial Inductance of PCB Lands 786
1 m6 E a- Q# E4 [! f" y9 B11.2.4 Currents Return to Their Source on the Paths of Lowest/ p+ b- i& @+ I. ^% \
Impedance 787$ v$ P+ D+ j- d" G# b
11.2.5 Utilizing Mutual Inductance and Image Planes to Force
, H) P: H7 U! ]! P+ ~5 I9 j7 a9 zCurrents to Return on a Desired Path 7931 f0 d* x% O4 [; L* u
11.2.6 Single-Point Grounding, Multipoint Grounding, and* V+ T0 A8 M+ o1 S
Hybrid Grounding 796
7 F4 d+ H$ r; G4 h. d8 ]11.2.7 Ground Loops and Subsystem Decoupling 8022 v. o6 C2 C+ g3 |4 J" m6 \
11.3 Printed Circuit Board (PCB) Design 805
0 l* `! @$ I: `/ W2 L/ j5 g- @' G11.3.1 Component Selection 805
: k9 m* K& K, u3 h* }( C11.3.2 Component Speed and Placement 8061 I) h8 s% q/ d
11.3.3 Cable I/O Placement and Filtering 8089 X3 v) W! E- n6 Z- @
11.3.4 The Important Ground Grid 810( r( ]4 s$ Y X! O
11.3.5 Power Distribution and Decoupling Capacitors 8128 v: j2 t; I; T+ X! E
11.3.6 Reduction of Loop Areas 822
9 l! [& v4 h7 v2 i. y- \11.3.7 Mixed-Signal PCB Partitioning 823% H/ Z5 f9 v) }3 _' z
11.4 System Configuration and Design 8273 i; A5 O; F* E3 i$ T( K0 e! m) E
11.4.1 System Enclosures 8272 ]5 g! n9 }4 }4 Q% _) d
11.4.2 Power Line Filter Placement 828
: c8 B9 v1 } y! c: B5 g11.4.3 Interconnection and Number of Printed
9 X: c+ `$ X1 ^6 f4 x* LCircuit Boards 829
- a( q; j: T$ I0 Q, a1 m11.4.4 Internal Cable Routing and Connector Placement 831- \4 c/ w: X. M7 z
11.4.5 PCB and Subsystem Placement 832
' }- h7 \& g% i11.4.6 PCB and Subsystem Decoupling 832) e6 u. ^0 K# X0 k/ ]
11.4.7 Motor Noise Suppression 832) ?" s6 m+ j+ @( A0 k- s
11.4.8 Electrostatic Discharge (ESD) 834
$ @' ^5 m+ ^1 g+ L' C7 Q! o( q; J11.5 Diagnostic Tools 847% y+ `0 B: w$ K6 ~9 P( l5 E
11.5.1 The concept of Dominant Effect in the Diagnosis of
- k% T( h* F0 G7 dEMC Problems 850
4 K9 p2 S* X8 DProblem 856
: o( r+ ~6 M! u% B* T, HReferences 8572 m0 U T9 Z- e" E5 k- T
Appendix A The Phasor Solution Method 8597 r' J# e2 P G4 V! }
A.1 Solving Differential Equations for Their Sinusoidal,3 z, S9 @: H9 R+ H
Steady-State Solution 859
( \. S' U0 f3 A3 n+ jCONTENTS xiii
4 \# J& Y8 j: \A.2 Solving Electric Circuits for Their Sinusoidal,5 G+ r z% M" k; F: ^: c" g* Q9 X/ R
Steady-State Response 863/ e* ]! T, Q, L' [ G
Problems 867
# o0 N; j: a7 p u CReferences 8694 B. d$ z! n) B# C! t
Appendix B The Electromagnetic Field Equations and Waves 871" f; i. ^% |; e
B.1 Vector Analysis 872
- `* ^2 [# {; `" IB.2 Maxwell’s Equations 8819 q+ e b% Z7 ]! h# a( B& W) ?
B.2.1 Faraday’s Law 881
5 `2 z2 W5 B" V8 Y& h* dB.2.2 Ampere’s Law 892. q- ]$ h$ X2 C1 t: E4 c) ]- [
B.2.3 Gauss’ Laws 898% f, q+ `, U. m2 r9 { y
B.2.4 Conservation of Charge 900
) t4 f- N5 T g1 ^2 z; ?. Y3 iB.2.5 Constitutive Parameters of the Medium 900
* ?$ F+ S2 { L" `/ l( p# \B.3 Boundary Conditions 902
8 n4 a6 z2 E9 o( A: G/ KB.4 Sinusoidal Steady State 907! g' H- E5 G% d2 q: P
B.5 Power Flow 909
; `1 [" G+ [ U H$ G- sB.6 Uniform Plane Waves 909
( h6 O- b/ b$ w5 SB.6.1 Lossless Media 912
8 q' v; X% d. a' t$ k2 e0 s( j' M6 BB.6.2 Lossy Media 918
- d9 D8 `' |& ^6 G0 ~! \+ eB.6.3 Power Flow 922
9 R& E8 f8 T3 R- C, U5 ?B.6.4 Conductors versus Dielectrics 9236 K# k2 U' c! K% m' [" R+ p& V
B.6.5 Skin Depth 925 I3 M# U6 A( A" ^. Q
B.7 Static (DC) Electromagnetic Field Relations—4 D* d8 o3 h: [
a Special Case 927
1 G( Q% u# D! _' t+ n( ^: rB.7.1 Maxwell’s Equations for Static (DC) Fields 927
' @% ?* u8 R0 H7 VB.7.1.1 Range of Applicability for
& n0 l/ g6 N! ^, qLow-Frequency Fields 928& F. C8 \& F( X7 w" r/ N
B.7.2 Two-Dimensional Fields and Laplace’s" j' U. l3 u9 B
Equation 928* ~0 f* w6 L& H2 X1 ?3 i- m, U
Problems 930
& S; r: F; Q9 [' U, ]' oReferences 939! C2 w+ S, m. g$ q c& F$ R
Appendix C Computer Codes for Calculating the Per-Unit-Length
1 N! Q. [% N, `! o1 e+ H. C# m(PUL) Parameters and Crosstalk of Multiconductor
. A. t8 w3 T' W% i' ~( p8 N$ ETransmission Lines 941* r: W9 P2 {. j
C.1 WIDESEP.FOR for Computing the PUL2 w; F7 L, f" M% a6 `6 y$ N
Parameter Matrices of Widely Spaced Wires 942
o, D( o! M7 N* e& z' r( i5 ^0 oC.2 RIBBON.FOR for Computing the PUL Parameter# t# x% H' p% b# Y4 b$ H$ Z
Matrices of Ribbon Cables 947
2 C# r' ~8 }6 i, _9 z L$ v/ ?C.3 PCB.FOR for Computing the PUL Parameter
: s- Q% T7 Q& r4 v) ~: oMatrices of Printed Circuit Boards 949
+ v# L, n0 Q: W& L! s' e* Lxiv CONTENTS
# g! Z. }; M3 @1 E0 Z% d# jC.4 MSTRP.FOR for Computing the PUL Parameter
" D$ v7 P1 N6 x; k+ Q& [; e+ B4 RMatrices of Coupled Microstrip Lines 951/ h5 N/ s6 W7 U% N
C.5 STRPLINE.FOR for Computing the PUL
, J: y0 O6 [: C1 cParameter Matrices of Coupled Striplines 952) ^$ |/ j1 Z+ G5 |; U+ p- J8 W5 M& L
C.6 SPICEMTL.FOR for Computing a SPICE- N; T8 s/ X: B' Z5 h
(PSPICE) Subcircuit Model of a Lossless,, M3 K1 ~" e/ [/ L" x
Multiconductor Transmission Line 954
7 y3 v9 @# N& I; D. T0 DC.7 SPICELPI.FOR For Computing a SPICE (PSPICE)
1 i' B/ N- G' u! a0 P" N( `Subcircuit of a Lumped-Pi Model of a Lossless,2 F' z; E% p" p S7 h5 I" f
Multiconductor Transmission Line 956- M( s( V D% n+ B7 x
Appendix D A SPICE (PSPICE) Tutorial 959
4 T( v" s+ j& l7 Z, ? i" dD.1 Creating the SPICE or PSPICE Program 960
! f v$ Q9 V$ h2 P) K; I6 rD.2 Circuit Description 961/ ~3 q# [2 [' c! D' X" [6 t) H* E
D.3 Execution Statements 9665 A3 t# n6 a# X
D.4 Output Statements 968) {6 W7 h+ j' i
D.5 Examples 9703 t j7 Q+ m+ b ]* J& B
References 974
0 v# a7 F, u3 c+ _* G* }Index 975
/ \/ U' s, q; N# O0 j) s! O8 y
/ r$ Z- x$ ? L( M0 C/ j |
|