|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
1.电磁兼容导论英文版7 J' Q6 d$ j2 a4 H' `
《电磁兼容导论》是机械工业出版社2006年出版的图书,由保罗编著。本书全面系统地讲述电碰兼容(EMC)的基本原理及其应用。1 w: H& q9 Y. e
本书全面系统地讲述电碰兼容(EMC)的基本原理及其应用,包括EMC概论、电子系统的EMC要求、电磁场理论、传输线、天线、天件的非理想性能、信号谱、辐射发射和敏感度、传导发射和传导敏感度、串扰、屏蔽、静电放电、的系统设计等内容。本书讲述深入浅出,配合典型例证,实用性强。可作为高等院校相关专业电磁容课程教材,也可供EMC设计开发人员参考。; q3 M0 d1 i% O0 `3 N+ k9 n2 ?
/ e7 l- T# p# F( f5 XContents- e3 X# T1 s T+ y$ ~0 G l
Preface xvii) a m/ M' x) |' B# Y& P! Z. y
1 Introduction to Electromagnetic Compatibility (EMC) 1) ?, c. Q% t8 ?" ^1 r
1.1 Aspects of EMC 32 E" a c, V% s2 `. Y; f, R
1.2 History of EMC 10
$ S l, L7 l6 n' v, B1 y1.3 Examples 12
% C' N+ [; @8 D1 r. |1.4 Electrical Dimensions and Waves 14. Z- W; k, [8 [. R5 B5 _# S w
1.5 Decibels and Common EMC Units 23) {! g5 Q4 @; `
1.5.1 Power Loss in Cables 32
$ M8 q8 s3 \# \* Z6 n4 e/ w E; j1.5.2 Signal Source Specification 37
8 r* a" j% r, U& C1 ~. P7 JProblems 43
, z1 k# |/ c2 D4 u, _! DReferences 48
6 x; J: h! R7 P2 EMC Requirements for Electronic Systems 49
4 Q4 c6 g4 Z; s0 `2.1 Governmental Requirements 50( X a# K1 y+ A, R& T) m7 v
2.1.1 Requirements for Commercial Products Marketed
6 L& z- T2 p5 lin the United States 50
q4 F( L3 q+ S5 G0 S+ \0 |2.1.2 Requirements for Commercial Products Marketed/ @8 C E J( @+ O: P
outside the United States 55
) I6 {8 s: U; d. P& a2.1.3 Requirements for Military Products Marketed in the
1 t: w$ M! o7 oUnited States 60# e) b$ n( I( ?; A
2.1.4 Measurement of Emissions for Verification of Compliance 620 C+ ~& ^8 N' N. e
2.1.4.1 Radiated Emissions 64
, z2 L2 p6 l$ N2.1.4.2 Conducted Emissions 67
( |8 V) g3 a+ g: P# V2.1.5 Typical Product Emissions 72
( c( R; ~# ]8 u. i5 {+ g2.1.6 A Simple Example to Illustrate the Difficulty in Meeting" ?* c1 G* n/ l6 V8 y
the Regulatory Limits 789 z* N$ i! u1 ?+ N: z' \9 i3 B
vii9 x/ W) S, s' O) p
2.2 Additional Product Requirements 79
' I, [/ ]8 I+ Y- c5 X" M) l2.2.1 Radiated Susceptibility (Immunity) 81
# p9 ?' B4 e0 J& b/ U. w2.2.2 Conducted Susceptibility (Immunity) 81
- @+ Q5 v& G5 U5 f1 O( `- {2.2.3 Electrostatic Discharge (ESD) 81* ?$ ]) X$ B, b( i
2.2.4 Requirements for Commercial Aircraft 82( `$ ^/ f- G, U, l2 t& ~% A
2.2.5 Requirements for Commercial Vehicles 82
6 c8 I) {, G& @' u2.3 Design Constraints for Products 82! ^; C' j1 V) Q
2.4 Advantages of EMC Design 843 p0 P* g# Z( e" {* [: o8 L+ A
Problems 86
2 r$ _* S$ i5 w# ]1 v) V( UReferences 896 i& ?# @3 p. G3 Z: i# y
3 Signal Spectra—the Relationship between the Time Domain and+ ?- a% C9 q' [7 H) f* R
the Frequency Domain 91- W9 T/ |$ `6 t" n, n& t
3.1 Periodic Signals 91
0 h* O6 C! o* M. J* `3.1.1 The Fourier Series Representation of Periodic Signals 94
! z4 s( J5 q% h' A V3.1.2 Response of Linear Systems to Periodic Input Signals 104
+ k- ^- O; i+ U A( V3.1.3 Important Computational Techniques 111
: t2 f( b0 O1 w7 R" h3.2 Spectra of Digital Waveforms 118
% f7 c1 F( K& h; o3.2.1 The Spectrum of Trapezoidal (Clock) Waveforms 118
T: o/ c: c+ t5 o4 Z5 E3.2.2 Spectral Bounds for Trapezoidal Waveforms 122 ?0 G) C/ q5 a2 N9 w
3.2.2.1 Effect of Rise/Falltime on Spectral Content 123- D, R( o1 q/ y5 s$ F, c* G
3.2.2.2 Bandwidth of Digital Waveforms 1329 ^7 q+ u4 X, A) E# G* q8 G
3.2.2.3 Effect of Repetition Rate and Duty Cycle 136" j+ |9 o8 q3 M2 C/ v
3.2.2.4 Effect of Ringing (Undershoot/Overshoot) 137
) C# @3 X3 {/ s5 o3.2.3 Use of Spectral Bounds in Computing Bounds on the
2 n1 z4 @- V! t5 \Output Spectrum of a Linear System 140
: D3 k% r2 j. b) h: e# ]3.3 Spectrum Analyzers 142/ N# @! f8 F/ J9 m7 J
3.3.1 Basic Principles 142
( P3 d0 {4 A" c- I3.3.2 Peak versus Quasi-Peak versus Average 1465 Y/ J! r( h1 B8 K
. F( j/ o- z/ ]- T5 y4 q
3.4 Representation of Nonperiodic Waveforms 1489 T/ C, t/ p# v! a# ]: w# K
3.4.1 The Fourier Transform 148
% t5 `; }' L2 b6 c: F& q( |3.4.2 Response of Linear Systems to Nonperiodic Inputs 151; U+ E, W4 X5 F
3.5 Representation of Random (Data) Signals 151# S- T7 O4 c+ o1 O6 D1 s# E3 I$ m
3.6 Use of SPICE (Pspice) In Fourier Analysis 155
$ W! {9 W ~5 M! eProblems 167
8 M* J- v2 G' @& f6 L! _: Y9 U, zReferences 175
/ t- k* _. D; i* O2 N( N$ a* B4 Transmission Lines and Signal Integrity 177
6 V' A+ c1 w5 g4 N" Y4.1 The Transmission-Line Equations 181
9 k+ ]: K# ~- U5 D! b6 X5 |" n* [1 \4.2 The Per-Unit-Length Parameters 184
7 u9 P: n+ z3 M, t# N, J2 {4.2.1 Wire-Type Structures 1865 o, k, h) @; ]2 |4 y" y- Z
viii CONTENTS
0 e& j+ o$ S% ~9 `2 T1 r- I1 [4.2.2 Printed Circuit Board (PCB) Structures 199; z9 Q o# J! G( }
4.3 The Time-Domain Solution 2041 d J7 x) Q$ S8 u
H: d7 {# C8 M4 M6 D
4.3.1 Graphical Solutions 204
# J9 E" r: |( f! }4 P. a7 C: ~! t- \4.3.2 The SPICE Model 218
, o' Q& X: z) C u: c) G4.4 High-Speed Digital Interconnects and Signal Integrity 225
; J$ D9 |8 i& O# m8 n4.4.1 Effect of Terminations on the Line Waveforms 230
0 }4 z1 V$ _* }7 T' I4.4.1.1 Effect of Capacitive Terminations 233
8 u2 Y& Q* r" t4.4.1.2 Effect of Inductive Terminations 236
$ {( J; V; A* a) m2 ?3 G$ Z4.4.2 Matching Schemes for Signal Integrity 2383 {" Y4 k' c7 K% W2 p) z
4.4.3 When Does the Line Not Matter, i.e., When is Matching
8 b8 U; `9 e; ~& R+ y2 \6 nNot Required? 244
5 Y: |+ Q$ ]7 w4.4.4 Effects of Line Discontinuities 2472 t* m2 N$ {/ G
4.5 Sinusoidal Excitation of the Line and the Phasor Solution 2603 u8 A0 X* T4 V5 `( l* j
4.5.1 Voltage and Current as Functions of Position 2614 g* N7 O! b& L. P
4.5.2 Power Flow 269! v1 A, U/ E! w3 y& W8 w$ J( U4 _
4.5.3 Inclusion of Losses 2704 w! q7 \% J0 I" z0 k/ C( y* e
4.5.4 Effect of Losses on Signal Integrity 273. p' K! f7 a/ u
4.6 Lumped-Circuit Approximate Models 283/ W" e% ^, l9 b" w
Problems 287
* c5 c$ S3 u; M# x' wReferences 297
# k2 v& f8 c/ S) _- ?! j- Q5 Nonideal Behavior of Components 299
( _( b8 {& f* k! J( e) R5.1 Wires 300' f7 v4 K; z, M* L! `
5.1.1 Resistance and Internal Inductance of Wires 304$ H- z4 E' k- S2 b' M
5.1.2 External Inductance and Capacitance of Parallel Wires 308 ]* T, L- W7 a9 U( L
5.1.3 Lumped Equivalent Circuits of Parallel Wires 309
6 ~2 y- p$ d9 G0 I( m; x; G5 z, l5.2 Printed Circuit Board (PCB) Lands 312
1 F6 }6 s4 K. G0 X% l5.3 Effect of Component Leads 3159 \! n' o# v' U K5 I0 Y4 p9 ^, V! t
5.4 Resistors 317
. e( Q) g0 f, _0 ^% V1 V& o" [5.5 Capacitors 3258 | Q q' p( z0 U
5.6 Inductors 336- e9 i0 \+ O; n Q3 p
5.7 Ferromagnetic Materials—Saturation and Frequency Response 340
1 U4 W4 ]% @/ u$ y) V5 I9 L" w$ d% d5.8 Ferrite Beads 343( ^% T- L5 G+ S2 E+ W& C4 f4 Z* v
5.9 Common-Mode Chokes 346
" a% S; \+ L i Z' c5.10 Electromechanical Devices 352
k# E. d9 x# Y- n2 f5 O* X5.10.1 DC Motors 3523 d! y6 b: W4 Z
5.10.2 Stepper Motors 355
" H' U( Z; E6 O6 Q5.10.3 AC Motors 355, V- M, B+ r! [& n4 O% m, b
5.10.4 Solenoids 356( H* M( D0 l! R" k" s, o
5.11 Digital Circuit Devices 357
* T7 ~4 K$ J# S7 M' g5.12 Effect of Component Variability 358
: e6 K3 ~" V' j) T( } h( c5.13 Mechanical Switches 359
& j" \7 n% a o) ]( {5.13.1 Arcing at Switch Contacts 3604 t& I: i# T! M' X7 a
CONTENTS ix; b7 N# T" K& d4 F% c$ Y
5.13.2 The Showering Arc 363
4 t6 ^: b% i6 O8 m5.13.3 Arc Suppression 364
4 P: T% h- I8 G' N9 bProblems 369
8 `% a! }" J* n5 SReferences 375+ \: {+ A$ k- V: c5 d; d
6 Conducted Emissions and Susceptibility 3773 ?4 o: c# X$ P U$ x+ p
6.1 Measurement of Conducted Emissions 378
0 V& ?* i& \ C) p' U; E6.1.1 The Line Impedance Stabilization Network (LISN) 379: b4 o9 c, g' w- P$ w" f
6.1.2 Common- and Differential-Mode Currents Again 381' B* q+ T& |+ c# n
6.2 Power Supply Filters 385
1 f4 Q( B' j5 {. o6 ^6.2.1 Basic Properties of Filters 385$ V% r3 Y3 t& n8 c& n
6.2.2 A Generic Power Supply Filter Topology 3889 b3 v' H9 f( i1 F
6.2.3 Effect of Filter Elements on Common- and3 Q% d8 Y; v* ]3 B/ h7 c4 m
Differential-Mode Currents 390
! @$ B9 i" |% k" D6.2.4 Separation of Conducted Emissions into Commonand
8 a8 B. G s7 U( u) s: CDifferential-Mode Components for
! U7 j) k0 I' `Diagnostic Purposes 396 U5 d% d% v T4 H- [& Y, C
6.3 Power Supplies 401! V: c" e, i9 t
6.3.1 Linear Power Supplies 405
6 S8 m5 C. {9 E7 ]6.3.2 Switched-Mode Power Supplies (SMPS) 406
# b7 Y4 c. T/ ?7 ?3 Z, L# @9 g/ t$ f6.3.3 Effect of Power Supply Components on Conducted
( j9 j; R7 a- x* ^' rEmissions 409# F3 Y" L" m# ~) ~4 b. L
6.4 Power Supply and Filter Placement 414
r, k) ?7 Y# ~6.5 Conducted Susceptibility 416
( Z/ n8 e; r+ r1 `Problems 416) V3 d- y: P9 i! _7 H1 H
References 419$ m. w( x9 c# X% e
7 Antennas 421
+ F, H8 P: F. A/ |7.1 Elemental Dipole Antennas 421
1 l7 w9 o u: { S1 @( x! @2 z7.1.1 The Electric (Hertzian) Dipole 422
: e$ n9 h' J' E7 p! u7.1.2 The Magnetic Dipole (Loop) 426
) X' I( M! r5 A$ U7.2 The Half-Wave Dipole and Quarter-Wave Monopole Antennas 429
. q, j0 e1 f3 }3 ?7 D2 c- h7.3 Antenna Arrays 440+ T- R, t; K" Y: g% ^
7.4 Characterization of Antennas 448
; H; v( A ?, ^5 H% ~8 Z' v7.4.1 Directivity and Gain 448+ ^2 ?$ N# y; `4 t) Y; X
7.4.2 Effective Aperture 4540 _: O/ _8 w- | A7 q# P" z$ P/ p
7.4.3 Antenna Factor 456* l' ^9 i7 {$ {" W
7.4.4 Effects of Balancing and Baluns 4606 P' \& M8 \% U$ e
7.4.5 Impedance Matching and the Use of pads 463& v# d8 j6 k2 s2 l% G5 H$ r+ }
7.5 The Friis Transmission Equation 4663 \4 L0 W7 g/ N& a
7.6 Effects of Reflections 470: B" |, x* L8 q& h1 ~
7.6.1 The Method of Images 470
3 r# N0 s, O. l7 Ux CONTENTS) n: S0 w7 J5 n0 E5 f1 E
7.6.2 Normal Incidence of Uniform Plane Waves on Plane,' J5 C, m0 B# A
Material Boundaries 470
6 x f2 G: w( g' E; I7 y( ]% }7.6.3 Multipath Effects 479' H3 C" t. |& B* s3 Y+ R
7.7 Broadband Measurment Antennas 486
7 P1 o; M0 k4 m9 m; B7.7.1 The Biconical Antenna 487& p t- e; Y0 n
7.7.2 The Log-Periodic Antenna 490: j8 e7 R7 I5 u9 V2 [, e' Z
Problems 4947 v! U4 ?4 X1 G" F/ `6 r
References 501
8 Y/ y; E4 q3 a# L4 V! [8 Radiated Emissions and Susceptibility 503* D; q* {$ |6 _& T9 K( v8 y
8.1 Simple Emission Models for Wires and PCB Lands 504
0 \/ i4 u3 S n/ G8.1.1 Differential-Mode versus Common-Mode Currents 504
" f6 G Q( q, _+ W$ D* c- S! C8 e8.1.2 Differential-Mode Current Emission Model 509
0 Z5 c* X2 S6 ?2 W2 f8.1.3 Common-Mode Current Emission Model 5147 Y+ W7 N9 M% B: W' c0 h: J7 F4 a
8.1.4 Current Probes 518, Q- Q M0 Y5 R4 ~! \" W$ J/ u. V- _
8.1.5 Experimental Results 523
$ S1 n1 ~. d$ @0 Y9 U0 X2 y, d2 ?8.2 Simple Susceptibility Models for Wires and PCB Lands 533
# ?4 z1 r2 B1 a! [" T8.2.1 Experimental Results 544
5 ^- S5 |3 o+ f9 U7 E3 u' D, b8.2.2 Shielded Cables and SuRFace Transfer Impedance 546
% @7 i1 J/ v3 h* JProblems 550
+ T; x4 A+ }" hReferences 556
% z+ S+ ]+ r X1 V7 b' K- B9 Crosstalk 559
# f$ }/ I* A7 x7 z* |. \9.1 Three-Conductor Transmission Lines and Crosstalk 560& I/ F1 M2 t7 T6 c. e
9.2 The Transmission-Line Equations for Lossless Lines 564' c+ m6 w8 P% H B
9.3 The Per-Unit-Length Parameters 567
2 w# { I* w6 y9.3.1 Homogeneous versus Inhomogeneous Media 5684 i# M8 S/ A/ C) ^# Y/ Z
9.3.2 Wide-Separation Approximations for Wires 570
. E1 v! W6 @+ Y' f) S" v9.3.3 Numerical Methods for Other Structures 580
6 n3 o6 I5 ]. k7 F0 c* @9.3.3.1 Wires with Dielectric Insulations
# z/ r- ^8 }* [/ w(Ribbon Cables) 586
/ n8 ~" w8 U( _ d: m( j9.3.3.2 Rectangular Cross-Section Conductors6 v8 @" |: A& T& u; F) f
(PCB Lands) 590
: b. Z* ~- X8 B9.4 The Inductive–Capacitive Coupling Approximate Model 5950 f! Q9 _; r$ c
9.4.1 Frequency-Domain Inductive-Capacitive Coupling9 f$ f" q$ a, O1 Y! b9 ?) u" g; E$ E
Model 5993 S/ `6 z" o: L$ s+ G
9.4.1.1 Inclusion of Losses: Common-Impedance8 V5 o: y; Q6 o- ~2 {
Coupling 601% R3 |7 P6 l% U9 ^- U4 F
9.4.1.2 Experimental Results 604
4 E/ c# S) u; o. ?8 H5 t1 h! a; |9.4.2 Time-Domain Inductive–Capacitive Coupling Model 612
3 U+ E! {0 v0 T2 F6 a6 ]3 M6 ~9.4.2.1 Inclusion of Losses: Common-Impedance Coupling 616! b1 D4 m% a% Z O: N" |
9.4.2.2 Experimental Results 6172 w8 p- C; n" w- K: S4 o' i0 I
CONTENTS xi
" ?% L6 ?% `* R5 B9.5 Lumped-Circuit Approximate Models 624! C5 X$ z6 ?& L2 ]$ |/ ^
9.6 An Exact SPICE (PSPICE) Model for Lossless, Coupled Lines 624+ \3 G8 I1 I, D, m: S
9.6.1 Computed versus Experimental Results for Wires 633) g& v n+ Q d7 O& p$ O
9.6.2 Computed versus Experimental Results for PCBs 640
/ ~2 M0 g3 V* k4 v( r1 M9.7 Shielded Wires 6470 I B. j5 @& ~* y( X5 F5 c
9.7.1 Per-Unit-Length Parameters 648% N$ e) b9 h# Z0 Y8 s" Q
9.7.2 Inductive and Capacitive Coupling 651) u$ N" O, M! W+ K" G3 y! L; R
9.7.3 Effect of Shield Grounding 658
/ Q" B" T9 i* f6 G7 x+ J9.7.4 Effect of Pigtails 667( v1 W0 ~) t* M
9.7.5 Effects of Multiple Shields 669
9 A) J' W$ H! a- Q% H# ^% J9.7.6 MTL Model Predictions 675
; |9 ^; l* v W7 Z' s9.8 Twisted Wires 677
0 L+ }7 U# r& Q' m9.8.1 Per-Unit-Length Parameters 681
* u) n6 n, b% ^2 b9.8.2 Inductive and Capacitive Coupling 685
7 b: R7 J2 `1 T. E; V- ?" l W% f9.8.3 Effects of Twist 689
0 J7 A: h) |7 h& i# s9.8.4 Effects of Balancing 698
: }. y+ s7 H, \/ I9 pProblems 701
8 X) `1 j( i H/ f( S8 lReferences 7109 H' B1 r' a* q
10 Shielding 713
8 H6 J6 Z. n. ~- i' C: s" T10.1 Shielding Effectiveness 718
. L, |, l/ S, }+ ^# y# H! W7 K* U10.2 Shielding Effectiveness: Far-Field Sources 721
" V4 J6 o3 f0 I- V! D s$ R& N/ K10.2.1 Exact Solution 721
3 ?& V/ {; F" M% U' H7 i10.2.2 Approximate Solution 725" S) C5 a' e s! y: _
10.2.2.1 Reflection Loss 725
: l" G: ]" X1 x7 i- |$ [3 ?10.2.2.2 Absorption Loss 728
g) Z5 w- Z# y" B" M10.2.2.3 Multiple-Reflection Loss 729
3 r- y8 C% P8 \ D5 k10.2.2.4 Total Loss 731
9 ~3 |$ e. }, H9 a) V' U" E% R10.3 Shielding Effectiveness: Near-Field Sources 735
+ V! ~7 \* G1 t8 H) G$ i10.3.1 Near Field versus Far Field 736
! r. f* x) G* T* L4 z+ q10.3.2 Electric Sources 740: p) k1 D8 D" h9 T) x# K
10.3.3 Magnetic Sources 740
5 f5 \8 W% j9 ^10.4 Low-Frequency, Magnetic Field Shielding 742- B1 M; p. c) M: F! F. ?
10.5 Effect of Apertures 745
$ [8 M7 v* G. }4 @2 nProblems 750* r- M. X$ k* [; o$ l
References 751
, t: n4 o) y2 t9 a: Q+ Z6 Z9 p11 System Design for EMC 753
% Q, ~+ k! Z+ D1 }11.1 Changing the Way We Think about Electrical Phenomena 758
9 j% w! A+ ~- T11.1.1 Nonideal Behavior of Components and the, S7 U' u, E, m0 \
Hidden Schematic 758
/ {. n2 I* O2 x' _ U! C+ Y& z11.1.2 “Electrons Do Not Read Schematics” 7635 {$ a; E: f: M% |0 ^ u+ z
xii CONTENTS! d1 B4 L; j6 }# G
11.1.3 What Do We Mean by the Term “Shielding”? 766) L" ]% l7 k2 `5 m9 I9 a& Y, r
11.2 What Do We Mean by the Term “Ground”? 768
5 R5 Y1 c5 e W# x# Z& ~& L11.2.1 Safety Ground 771
# L" c7 Q j t8 w* c" j. R11.2.2 Signal Ground 774
$ i$ l. c. d* V2 ^* ]11.2.3 Ground Bounce and Partial Inductance 775- W! X4 z/ T" R: q
11.2.3.1 Partial Inductance of Wires 781( ~: k; {7 X$ Q) q0 W9 ]' w
11.2.3.2 Partial Inductance of PCB Lands 786
+ H6 Z6 Y. j) h, W+ j3 Q# n11.2.4 Currents Return to Their Source on the Paths of Lowest5 k/ j" d( g0 e2 t& Y- w* V% K
Impedance 787
5 l: m8 g5 Q" A11.2.5 Utilizing Mutual Inductance and Image Planes to Force
/ ?- c1 @7 l' d$ ^( l1 o# A2 pCurrents to Return on a Desired Path 793
; U, {3 p, T/ M11.2.6 Single-Point Grounding, Multipoint Grounding, and( |8 m. @* v; t, ?' Q, q
Hybrid Grounding 796. ^2 j8 @9 r5 {+ x4 S: L
11.2.7 Ground Loops and Subsystem Decoupling 802: @( ~7 d b' t2 L7 J3 Y
11.3 Printed Circuit Board (PCB) Design 805 a4 e. n- z& i0 c1 B
11.3.1 Component Selection 805
1 L* {2 W5 N( N' t11.3.2 Component Speed and Placement 806
: ^- P6 z: m A8 a, e! a* H11.3.3 Cable I/O Placement and Filtering 808
! O, t! Q2 M" N" A7 X d11.3.4 The Important Ground Grid 810
! _' T2 K# ~& n, B0 B+ Q11.3.5 Power Distribution and Decoupling Capacitors 812% X, I. _8 y/ g: F
11.3.6 Reduction of Loop Areas 822
1 j( N% u# i8 w3 s! L; y: V11.3.7 Mixed-Signal PCB Partitioning 823; d, z6 P- l* _) i) X7 X9 E
11.4 System Configuration and Design 827. {) q8 }6 ~1 v/ j( b) M V* o$ M- a" j
11.4.1 System Enclosures 827
. K5 M& R$ j& n5 k# e# X11.4.2 Power Line Filter Placement 828
8 m: O5 g& [5 l( C2 A11.4.3 Interconnection and Number of Printed
4 T2 x( `( r& FCircuit Boards 829) P: o/ \9 d& P; }( b; N. S
11.4.4 Internal Cable Routing and Connector Placement 831
7 {! r8 c& L" ^5 I11.4.5 PCB and Subsystem Placement 8326 A- ` m& E( z \$ c
11.4.6 PCB and Subsystem Decoupling 832
, H1 T+ ~# x& c e6 Y# I11.4.7 Motor Noise Suppression 832
9 e1 l5 u7 W8 U0 W) i& v11.4.8 Electrostatic Discharge (ESD) 834
# Q! j) z) d8 {9 m) C% x& g6 Z% u11.5 Diagnostic Tools 847. a# V8 T& a- }
11.5.1 The concept of Dominant Effect in the Diagnosis of/ R: M5 }# f' m. H$ j9 I! d
EMC Problems 8503 S# z; u, N# F7 C7 S" x- P
Problem 856
" v6 P- \% o( |- n- iReferences 857
0 j6 R; L. [) w* Y9 d, g' m4 TAppendix A The Phasor Solution Method 859- L' d# M+ a8 A: p; t+ u. r
A.1 Solving Differential Equations for Their Sinusoidal,
% `( X; s9 W# ^# a5 gSteady-State Solution 859
7 z3 o. h: F- A2 MCONTENTS xiii
# G- N+ Q/ Q- Q, p+ t6 p; M8 SA.2 Solving Electric Circuits for Their Sinusoidal,
* B/ ^% N4 t7 m; B3 nSteady-State Response 863
7 K7 E: P% g# W6 B+ q7 ?8 bProblems 867
; M/ E: x a2 z# M, u. R9 [, S( H$ i7 fReferences 869& H5 I" k3 a2 A9 R8 d. J1 s
Appendix B The Electromagnetic Field Equations and Waves 871' d4 {. {6 d( B8 e8 R+ H* i
B.1 Vector Analysis 8728 v. T |) p+ Q# ]
B.2 Maxwell’s Equations 881
, h+ g& A4 {" ^& k6 ~B.2.1 Faraday’s Law 8810 ], b, b+ n8 }0 y
B.2.2 Ampere’s Law 892
4 n8 L5 ^% P! R. h9 G7 AB.2.3 Gauss’ Laws 8985 l5 v b- k9 g- D8 x& w# E
B.2.4 Conservation of Charge 9005 w/ M% Y, ]: D5 o' ^4 h% G' N
B.2.5 Constitutive Parameters of the Medium 900
$ n( S+ O6 h) e3 O5 t6 Y `B.3 Boundary Conditions 902& N, Q, b* @9 V' }
B.4 Sinusoidal Steady State 907
& D/ I. ?# j3 e/ SB.5 Power Flow 9092 z& t5 r1 V2 \6 X# G- x+ |
B.6 Uniform Plane Waves 909
( h$ H/ Y. `2 K3 S) V$ U8 Z' ]B.6.1 Lossless Media 9127 ?0 b) \% Y9 w/ A0 Q& F+ _8 |
B.6.2 Lossy Media 918
( ^, e, L5 M" L2 WB.6.3 Power Flow 922
( p& U4 i5 h QB.6.4 Conductors versus Dielectrics 923
- P8 d' N# b9 D4 _B.6.5 Skin Depth 9259 v4 l. X1 v& W" g& R) N: m+ K
B.7 Static (DC) Electromagnetic Field Relations—
' Y: v; e a1 \: a& Z# e6 Ja Special Case 927( p3 e5 D6 T; o0 h* R- s
B.7.1 Maxwell’s Equations for Static (DC) Fields 9279 ]$ m* B; | I8 p% J9 W
B.7.1.1 Range of Applicability for
* L( B6 T/ K! A, |: n4 kLow-Frequency Fields 928
6 F u# w1 a; s! {0 ^: lB.7.2 Two-Dimensional Fields and Laplace’s
1 L( N7 X0 j; T' bEquation 928
# O# f5 o# N9 X9 d" q+ fProblems 930- l. D: r6 f! R0 q1 b
References 939" O1 u1 j; b h* J2 r& F) Q5 y' \
Appendix C Computer Codes for Calculating the Per-Unit-Length) G4 |0 B6 T. x" z( W) i( R
(PUL) Parameters and Crosstalk of Multiconductor# H' c# ^) ?& R( r5 z
Transmission Lines 941
' |* |$ q+ Z$ Z7 o+ i5 g0 vC.1 WIDESEP.FOR for Computing the PUL9 W. {% n) ]: K- J
Parameter Matrices of Widely Spaced Wires 942) t4 p5 V# W) S
C.2 RIBBON.FOR for Computing the PUL Parameter) G5 _7 i8 M! M# F
Matrices of Ribbon Cables 9474 F% S+ @ m* c' i6 S
C.3 PCB.FOR for Computing the PUL Parameter
0 S. f% q* F6 d1 M- u$ n2 z0 hMatrices of Printed Circuit Boards 9497 ?$ E! p- O4 f6 s' }- j1 ?8 V
xiv CONTENTS
$ s* l6 U1 e9 E4 dC.4 MSTRP.FOR for Computing the PUL Parameter" t @' U2 D5 r1 \
Matrices of Coupled Microstrip Lines 951
^" Y: F+ J3 b! b' U L1 SC.5 STRPLINE.FOR for Computing the PUL! ^- w6 X) o, O/ w5 Z: u
Parameter Matrices of Coupled Striplines 952
4 g' H) R7 L1 i' j1 xC.6 SPICEMTL.FOR for Computing a SPICE
$ I) t4 c" Y5 j `(PSPICE) Subcircuit Model of a Lossless,
) N) }% `3 a9 w4 H, I; V dMulticonductor Transmission Line 954" |+ c0 \2 _( }5 Z
C.7 SPICELPI.FOR For Computing a SPICE (PSPICE)' j) A9 }, i- B0 z7 f1 k' y# A
Subcircuit of a Lumped-Pi Model of a Lossless,& }# r0 ^% {+ S, C+ p
Multiconductor Transmission Line 9564 P9 k* R9 G4 b. }# [3 H k e
Appendix D A SPICE (PSPICE) Tutorial 959+ t8 p4 v% f( w& k9 a; s
D.1 Creating the SPICE or PSPICE Program 960
" c0 }" i" j3 I {# gD.2 Circuit Description 961
! i( b( g# q9 e- c" oD.3 Execution Statements 966/ y L8 `; [3 j6 B$ r+ `, f2 j6 S
D.4 Output Statements 968& y% A$ z( I3 e; v! O( e$ L' V
D.5 Examples 9705 {$ M, {0 a* u$ _' L
References 974
8 y- K) ~; r: D' A6 ZIndex 975" L% h2 J7 Z, b# r: n& m
% W/ a1 n$ ~: @& z |
|