|
本帖最后由 qingdalj 于 2013-5-19 09:10 编辑
: a1 i: u0 ~& w6 G
+ B/ R0 @0 ~1 w& | 接下来我们就做个简单的计算,验证验证吧!2 Y) v. ]# h9 ^- f, v I/ e
- D5 B" ]& j2 W% U& ], @ 出于计算的简单,我们可以这样看:信号的前19段电平变化均为1v,上升时间均为1ns,只是他们的起始电平不一样而已,所以不妨将起始电平与反射计算分开,然后叠加在一起就可以了,这样这19段的反射情况完全一样,只要将它们在传输线上传输的时间次序搞清楚,计算它们的反射就不存在复杂的问题,只要计算出一个,根据在时间轴上的不同依次叠加。对于第二十段计算也更加简单,它只是一个上升时间为1ns电平为1v的普通上升沿罢了(这里也将起始电平与反射计算分开)。
* v1 \" C/ a! ~; a: U2 B4 N& }9 _0 c7 X9 q3 F6 K4 k* d+ V6 ]
这里我将传输线的延迟定为1ns绝非巧合,只为计算简便而已。现在我们看前19段的反射,对于第一段上升沿它的上升时间为1ns,当它到达终端电阻时经过反射此处电压为1.5v,而后的1ns时间里由于上升沿过后第一段电压为0v,而第二段上升沿还未到达,第一段的反射也未返回,所以在此段时间里此处电压为0v(这里只是分段段数少才会这样)。经过1ns后第二段上升沿到达,而第一段上升沿还未返回,所以此时此处电压为1.5v,在随后的1ns时间里电平为0v,直到1ns时第三段上升沿到达,而第一段的上升沿反射也已经返回并叠加,依次类推,直到结束(最后要加上每一段的起始电平)。分段只是权宜之计,这里看到的反射要比我们通常用公式(这些公式也只适用于信号上升时间对传输线延迟非远大于的情况)计算的小的多,在推广到无穷段时,信号的反射就看不见了。
+ a' M0 z( e& `% Z3 q8 ~- @6 [. J- a ]( R$ x) S
计算通过以上计算,在终端接收的波形如下:% X+ B( b& _$ J3 t" _
% C# P0 e5 J; g: T8 Q, m
5 E: `. J0 |0 @$ Y9 \, s
) [+ \8 z' B+ Z: r
. [$ d2 @9 l1 t. x; v& K" G 由上图可知信号反射的影响只有0.2v,此时确实可以忽略,这就是我们讲的反射淹没在了上升沿。。。
4 K0 G! p: h( \; \" q2 m
0 i; z- [* Z/ X# c下面附上原始excel档,sheet1计算了第二十段的反射,sheet2计算了前19段的反射,因此需要将sheet1对应数值复制到sheet2中对应位置进行叠加,可以随意改变反射系数,查看反射结果,这个文档只针对分段为20段的情况,因为延迟时间不同叠加次序也不相同,所以对于其他分段情况需要略加修改。* p6 r- }, u4 _% [4 Y* H+ N ^: A
' E. |5 P0 U' o9 ]. i
反射淹没 - FRANCK.rar
(17.56 KB, 下载次数: 55)
, E3 G* j# _5 C, T( Q* J! L
2 R1 V. o; |" Y. a/ E0 Y# D解压密码:franck |
评分
-
查看全部评分
|