|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
带宽比DDR3提升大约12倍: j) r7 y7 L8 ~' \; t8 h6 N ^
传输每比特数据的能耗比DDR3要低70%7 x$ f& Y# i1 x6 m: N5 @; f0 b x2 `8 H
要提升内存性能,传统的做法是通过提升频率、增加通道来实现,但内存带宽时常成为瓶颈。与此同时,智能手机和平板电脑的快速发展也对内存模块的能耗与体积有更高的要求,这些设备都需要内存在容量更大的同时体积更小并且更节能。因此,内存技术到了需进一步革新的时候了,为此,美光、三星开发出了一个全新架构的HMC内存。0 m" S, t% o% l! c) K. R8 w, h# P, t% i: x; k
3D堆叠风吹到内存领域/ q# f' q* u* { o- _" w4 n: F+ A
$ P1 Z Y; A2 k F" h1 E 在芯片制造领域,3D堆叠技术正在大行其道,从英特尔的3D三栅极晶体管,到三星3D垂直堆叠型结构NAND闪存芯片(3D V-NAND),如今内存领域也出现了类似的多层堆叠产品——HMC(Hybrid Memory Cube)内存。$ }3 P: |7 w2 @& Q+ S
HMC内存的基本理念是通过特殊的半导体工艺,把多个DRAM芯片层层堆叠在一起。内存的内部就像建高楼一样,由一层层DRAM晶圆芯片(每一个DRAM晶圆芯片其实可以看成一个没有进行封装的内存芯片)堆叠起来,最终组成一个大容量的内存“芯片”。因此,HMC也被称“混合存储立方体”。值得一提的是,之所以采用DRAM晶圆芯片,是因为堆叠工艺要求较高,如果以芯片对芯片的堆叠方式将耗费极大时间与成本,因此HMC采用晶圆对晶圆的堆叠法这种更便捷和节约成本的方式。% B+ i) k1 ]+ c( z2 d9 T
当然,芯片内部的DRAM并不是简单的堆叠起来,这里面包含着从高层向低层穿孔以连接电极的蚀刻技术,以及将这些DRAM晶圆芯片垂直围绕在各层板面上的门极结构技术等一系列独特并有突破性的工艺技术。
5 M) A1 _) x; ^6 [3 @! q" B4 K$ Q! H& y2 s" b O( t* q5 l& U5 f, V9 u: ]
逻辑芯片,HMC 上的总管
1 Q4 U7 y" G& a* S a 我们都知道,人心散了,队伍不好带的道理。利用TSV硅穿孔技术将很多“小兄弟(DRAM晶圆芯片)”堆叠在一个模组里,内存的数据传输、带宽控制更加的复杂。如果跟以前一样直接交由主板或CPU的内存控制器来管理,肯定会影响效率,怎么办?为此,HMC内存中引入了一颗逻辑芯片。
7 j3 i: p! M) c/ e. O 这颗逻辑芯片就相当于一个次内存控制器,负责管理HMC内存中各内存芯片之间的数据传输、带宽控制,然后再将工作成果提交到主内存控制器。通过逻辑芯片的方式不仅能提高效率,还解决了另一个问题。现在处理器核心增加的趋势非常明显,而目前的内存必须通过外部内存控制器这唯一的路径与处理器连接,无法为处理器的各个内核及时提供数据。HMC内存则不同,逻辑芯片能够从特定的存储层向某个处理器的内核定向发送数据。这样处理器的每一个内核都能够与内存模块建立直接的连接,并且每一个连接都能够以最高的速度运行。因而,HMC内存不会在处理器内核数量持续增多的情况下出现瓶颈,只需通过逻辑芯片提供更多的连接,即可保证内存与处理器之间数据的高速传输。这也正是英特尔为什么也看好HMC的重要原因。
2 }8 t Q2 d: O, X/ t0 F( @ |
|