|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
本帖最后由 big_gun 于 2022-12-13 10:35 编辑 * H% b5 G- X8 a5 T! u2 J
( G& z% Q" P7 H4 t0 Q# h
1. 分辩率(Resolution) Q! s% \! u8 Y& U( v& }% p
, ^) s2 Q3 G* e
指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与 2n 的 比值。分辩率又称精度,通常以数字信号的位数来表示。
' |6 q* o' o- M! H. J e5 h2. 转换速率(Conversion Rate)
* N* K0 t' E) i/ g* x' p6 d9 Q7 ~4 r# X- x; `) a
指完成一次从模拟转换到数字的 AD 转换所需的时间的倒数。 积分型 AD 的转换时间是毫秒级属低速 AD,逐次比较型 AD 是微秒级属中速 AD,全并行/ 串并行型 AD 可达到纳秒级。3 v0 Z! i. m: r% m F6 n( _/ S
3. 采样时间(Conversion Time)' `* u2 Q U7 X
/ h6 H7 ?, v1 j3 F
则是另外一个概念,是指两次转换的间隔。为了保 证转换的正确完成,采样速率(Sample Rate)必须小于或等于转换速率。因此有人习惯上将 转换速率在数值上等同于采样速率也是可以接受的。常用单位是 ksps 和 Msps,表示每秒 采样千/百万次(kilo / Million Samples per Second)。; a$ x) T3 _+ ^6 |9 d h1 q3 T
4. 量化误差(Quantizing Error)
+ I4 K& O8 }0 S7 w+ }6 W
' Y" A) }# |* p. E1 k, q由于 AD 的有限分辩率而引起的误差,即有限分辩率 AD 的阶梯 状转移特性曲线与无限分辩率 AD(理想 AD)的转移特性曲线(直线)之间的最大偏差。 通常是 1 个或半个最小数字量的模拟变化量,表示为 1LSB、1/2LSB。# K; S9 B" I1 n
5. 偏移误差(Offset Error)# x% _3 T+ Q) m K$ I5 O7 r/ _
5 n( ?1 W+ m& I6 W" H2 z输入信号为零时输出信号不为零的值,可外接电位器调至最小。3 n4 X9 b" c& y; g
6. 满刻度误差(Full Scale Error)
/ T; } W- h3 ?" _) Q7 B# ]& I. O0 R: Y; u. v
满度输出时对应的输入信号与理想输入信号值之差。. w' y3 a4 i, N6 U" O! v' ?
7. 微分非线性(Differential nonlinearity,DNL)7 H; M7 t3 N5 V* ^
2 @" p% K; p1 S% \! ~ADC 相邻两刻度之间最大的差异。2 X e, \3 E# Z
8. 积分非线性(Integral nonlinearity,INL)2 `" {- t) l' b% |
( U- j: [+ ^! U$ e+ U# x表示了 ADC 器件在所有的数值点上对应的模拟值 和真实值之间误差最大的那一点的误差值,也就是输出数值偏离线性最大的距离。
4 ^3 b2 I! @& m6 Y6 K1 G9.总谐波失真(Total HARMonic Distotortion 缩写 THD)。
0 K& `9 y4 n" N( i/ Y
) @+ v+ T7 Q5 ?1 b0 b指输出信号比输入信号多出的谐波成分。谐波失真是系统不完全线性造成的。所有附加谐波电平之和称为总谐波失真。总谐波失真与频率有关。一般说来,1000Hz频率处的总谐波失真最小。ADC输出中的谐波失真是由ADC特性中存在的任何非线性引起的。每个实用的ADC都具有非线性特性。结果,每个实际ADC的输出中都存在谐波。DNL和INL是ADC特性非线性的量度,而THD是ADC输出中产生的谐波失真的量度。
! i+ ~( I. M/ m9 M8 d10.信噪比(SNR)
! y% c/ t2 Y, Y2 k% f9 l. T, Z
9 t3 A9 {2 z- @( Q& o c信噪比用于描述ADC输出数据中,信号与噪声的幅值之比。常常有如下的定义方式:是指一个电子设备或者电子系统中信号与噪声的比例。
/ ^, R1 |$ J8 V1 P D信噪比的计量单位是dB,其计算方法是10lg(Ps/Pn),其中Ps和Pn分别代表信号和噪声的有效功率,也可以换算成电压幅值的比率关系:20Lg(Vs/Vn),Vs和Vn分别代表信号和噪声电压的“有效值”。. e. ^& c' m4 B! _# U5 J- o& }
ADC的SNR受许多因素影响,包括分辨率(Resolution),线性度(Linearity)和精度(Accuracy)(量化级别与真实模拟信号的匹配程度),混叠(Aliasing)和抖动(Jitter)。ADC的SNR通常通过有效位数(ENOB)来表示,理想的ADC的ENOB等于其分辨率。量化误差的存在限制了理想ADC的SNR。一般认为,若ADC的SNR超过输入信号的SNR,则可认为输出的数字信号是对模拟输入信号的无失真数字表示。* ?8 a A, o! X! [% s
11.电源抑制PSR( o6 M2 w4 j5 }+ S) t1 i
! l/ E% d6 _$ {4 b0 }1 R4 B, K如果X V的电源电压变化产生Y V的输出电压变化,则该电源的PSRR(折合到输出端)为X/Y。无量纲比通常称为电源电压抑制比(PSRR),以dB表示时则称为电源电压抑制(PSR)。把电源的输入与输出看作独立的信号源,输入与输出的纹波比值即是PSRR,通常用对数形式表示,单位是dB。
3 X, g7 P; j4 R6 Y4 _PSRR=20log{[ripple(in)/ripple(out)]}& S6 }# A% w: v0 y' E, v* R
电源抑制比可分为交流电源抑制比和直流电源抑制比
/ w) I$ u- L% M6 ]' N2 F交流电源抑制比(ACPSR)' F9 B4 r! E5 I( u" m
先在供电电源端(比如标称电压为5V),在读取一个测量值Vi1,与之对应,在输出端测得电压值为Vo1;然后在电源电压上叠加一个频率为100HZ,有效值为200mV的信号,并读取第二个测量值Vi2,与之对应在输出端测得电压值Vo2, 按测量误差公式; \" q% ?( {0 `: o
输出端百分误差=(Vo2 -Vo1) /Vo1( k- o9 L# }* @. n/ [, F
电源端百分误差=(Vi2 -Vi1) /Vi1
; r* a0 k. v$ {; G- H电源抑制比=输出端电压变化的百分数 / 电源电压变化的百分数
) o. F7 R0 h- [注意:电源电压变化不是输入信号电压变化,PSRR表征的是电源电压不稳定对输出的影响。3 i; V6 T* B* ~$ ? c
直流电源抑制比(DCPSR) J5 h) J5 H# a6 @7 x
先在标称电源电压(5V)的情况下,读一个输出测量值,然后使电源电压变化 5%,在相同的输入信号电平下读取第二个输出测量值,按测量误差公式(同上题公式)计算得到的百分误差即为直流电源抑制比.
' y& b: n0 A Q, D+ S" q11.共模抑制比(CMRR)
+ R: ], w4 Q2 [# ^! k' Y- K3 s, ]# C) H: G/ s- Z/ F
共模抑制比CMRR是差模电压放大倍数Aud与共模放大倍数Auc的绝对值之比.5 d3 \) Y& R2 z# n* e$ s
CMRR=│Aud/Auc│ 或者CMR=20lg│Aud/Auc│(dB)
- P: `+ n( I$ K6 M2 ~: H5 y- z12.有效分辨率" Z1 j5 J; C5 {6 {
8 R# X( g' _/ K/ a2 R0 P5 g虽然12位ADC的分辨率在数据手册上声明的可以达到12位,但受限于噪声,其有效位数可能只有11位;
}4 j) l- E" A13.ADC输入阻抗
, M: ~8 A7 K3 A- e5 B* ^3 |! r. m+ ~* @+ L. }! k
ADC的阻抗匹配问题在特定架构的ADC中显得尤为重要,其会影响数据转换的精度。当往特定接口串入ADC时候,其相当于并联一个阻抗为ADC输入阻抗的元件,故会对电路的分压产生一定的影响。当信号源内阻与ADC输入阻抗相近时,会对ADC精度产生较大的影响。常见的解决方案是保证源端相比于ADC输入阻抗低阻,或者采用输入缓冲器(一般Σ-Δ型ADC内会内置)来提高输入阻抗
6 U3 Y+ o' S3 w! T9 c) C4 c( pADC类型
8 B% O7 e& s2 P M# R* z$ K2 }4 h$ q7 V" e: y
A/D转换器发展了30多年,经历了多次的技术革新,从并行、逐次逼近型、积分型ADC,到近年来新发展起来的∑-Δ型(Sigma-Delta)和流水线型ADC,它们各有其优缺点,能满足不同的应用场合的使用。
2 s# j0 B0 s( j逐次逼近型、积分型、压频变换型等,主要应用于中速或较低速、中等精度的数据采集和智能仪器中。2 `! y! p* l$ B2 x+ t2 H
分级型和流水线型ADC主要应用于高速情况下的瞬态信号处理、快速波形存储与记录、高速数据采集、视频信号量化及高速数字通讯技术等领域。
- R% p" E q. x% s+ u. D" C此外,采用脉动型和折叠型等结构的高速ADC,可应用于广播卫星中的基带解调等方面' @" x9 ~' H* R% I8 |+ [* |% T
ADC 的选择:6 K6 h# U" Q0 L: s* u
+ w! G& G% X3 ?; C% ~" N首先看精度和速度,然后看输入通道数,输出的接口如 SPI 或者并行的,差分 还是单端输入的,输入范围是多少。如何选择你所需要的器件呢?要综合设计的诸项因素,系统技 术指标、成本、功耗、安装等,最主要的依据还是速度和精度。
) y8 F% q6 O% h
}* X" d; K2 b 精度与所测量的信号范围有关,但估算时要考虑到其他因素,转换器位数应该比总精度要 求的最低分辩率高一位。常见的 AD/DA 器件有 8 位,10 位,12 位,14 位,16 位等。
^! M5 B# U+ I' p% V+ n1 Y 速度根据输入信号的最高频率来确定,保证 ADC 的转换速率高于系统要求的采样频率。3 K9 B+ M# v, N5 b- {5 _& A
通道有的单芯片内部含有多个 AD/DA 模块,可同时实现多路信号的转换;常见的多路 AD 器件只有一个公共的 AD 模块,由一个多路转换开关实现分时转换。
* B4 S6 n9 |& D' J& n 数字接口方式接口有并行/串行之分,串行又有 SPI、I2C、SM 等多种不同标准。数值编码 通常是二进制,也有 BCD(二~十进制)、双极性的补码、偏移码等。. E! e! h1 H1 d# W: r6 u
模拟信号类型通常 AD 器件的模拟输入信号都是电压信号,而 DA 器件输出的模拟信号有 电压和电流两种。
/ i/ V2 \( Y* v/ b7 [8 \8 f 同时根据信号是否过零,还分成单极性(Unipolar)和双极性(Bipolar)。
" R) J1 ~$ j" w2 ~4 z; W% i( e 电源电压有单电源,双电源和不同电压范围之分,早期的 AD/DA 器件要有+15V/-15V,如 果选用单+5V 电源的芯片则可以使用单片机系统电源。
6 V9 J5 F5 E5 v. F 基准电压有内、外基准和单、双基准之分。 9. 功耗一般 CMOS 工艺的芯片功耗较低,对于电池供电的手持系统对功耗要求比较高的场合 一定要注意功耗指标。
h% G, i* n0 J7 A0 O- m0 h' U% { 封装形式:常见的封装是 DIP,现在表贴型 SO 封装的应用越来越多
1 `% a1 H8 v3 |; T* R6 v 跟踪/保持(Track/Hold 缩写 T/H)原则上直流和变化非常缓慢的信号可不用采样保持,其 他情况都应加采样保持。- k% B& z' K5 o
满幅度输出(Rail-to Rail) 新近业界出现的新概念,最先应用于运算放大器领域,指输出电 压的幅度可达输入电压范围。在 DA 中一般是指输出信号范围可达到电源电压范围。(国 内的翻译并不统一,如“轨-轨”、“满摆幅”) 主要针对高精度测量类的 AD. • 参考电压需要足够精确,推荐使用外部高精准参考电压。 • 如果 PGA 可调,增益系数一般是越小噪声越低。 • 一般最好用到满量程,此时 AD 精度不浪费。 • 如果有偏置,需要进行自校0 Y7 j" E* X' b
& F/ y# e$ s2 y3 {1 M |
|