找回密码
 注册
关于网站域名变更的通知
查看: 64|回复: 0
打印 上一主题 下一主题

AMEYA360行业新闻:始于硬件却也被硬件所限的深度学习

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2022-12-5 15:09 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
  AI的浪潮其实早在20世纪就被多次掀起过,但真正成为人们不可忽视的巨浪,还是这十几年的事,因为这时候AI有了天时地利人和:算法与模型,大到足够训练这些模型的数据集,以及能在合理的时间内训练出这些模型的硬件。
0 P) ^1 H8 p" k
  但从带起第一波深度学习的AlexNet,到如今的GPT-3和TuringNLG等,人们不断在打造更大的数据集和更大的模型,加上大语言模型的兴起,对训练的要求也就越来越高。可在摩尔定律已经放缓的当下,训练时间也在被拉长。6 }$ j9 d9 h1 ]

) X( I8 |; H# w6 {  基于Hopper架构的H100GPU/英伟达
% U9 [5 }# c9 ~4 u0 I
8 i8 J2 Y6 y9 ]( T+ d  r, ]" W  以英伟达为例,到了帕斯卡这一代,他们才真正开始考虑单芯片的深度学习性能,并结合到GPU的设计中去,所以才有了Hopper这样超高规格的AI硬件出现。但我们在训练这些模型的时候,并没有在硬件规模上有所减少,仍然需要用到集成了数块HopperGPU的DGX系统,甚至打造一个超算。很明显,单从硬件这一个方向出发已经有些不够了,至少不是一个“高性价比”的方案。: u9 w& f0 U/ K! ?8 m" W6 a- H

8 w( @' A' f0 b1 w0 h" r  软硬件全栈投入3 p( |' [$ c2 n

5 {3 H; y, e* Y$ a- _  硬件推出后,仍要针对特定的模型进行进一步的软件优化,因此即便是同样的硬件,其AI性能也会在未来呈现数倍的飞跃。从上个月的MLPeRF的测试结果就可以看出,在A100GPU推出的2.5年内,英伟达就靠软件优化实现了最高2.5倍的训练性能提升,当然了最大的性能提升还是得靠H100这样的新硬件来实现。+ R! |) V' ?, ~; G! T# l1 l

" O  V# I, G; U6 `# U8 ?1 a; S  BillDally表示这就是英伟达的优势所在,虽然这几年投入进深度学习硬件的资本不少,但随着经济下行,不少投资者已经丧失了信心,所以不少AI硬件初创公司都没能撑下去,他自己也在这段时间看到了不少向英伟达投递过来的简历。
( [, x0 D5 R0 v5 Y5 G* i- c2 `* ?
  他认为不少这些公司都已经打造出了自己的矩阵乘法器,但他们并没有在软件上有足够的投入,所以即便他们一开始给出的指标很好看,也经常拿英伟达的产品作为对比,未来的性能甚至比不过英伟达的上一代硬件,更别说Hopper这类新产品了。
, l7 ^& Y1 B3 F' k( c! Z
, {, W* G. Q3 f1 G- n" r- q$ ^" a! c3 u: a; R

+ P& s. e9 e3 T/ v0 g( j
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-6-29 05:42 , Processed in 0.078125 second(s), 28 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表