|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
Basic concepts in RF Design
/ a& A$ }* |! G' X5 g+ E: i- dOverview
+ _' L7 c }3 w0 _# P tSystem Theory/ u, x/ O; e2 |7 w+ j i
Effects of Nonlinearities; ?+ o% s0 P/ N# i1 h/ J N: P
Gain Compression( q6 ^# {0 j" Y1 n$ @
Desensitization and Blocking5 ^+ a9 _5 q' d# b" I5 z) v8 \( T i
CroSSModulation' F( c- s& _, T: J6 G
Intermodulation
. C3 u. Z8 a0 Z# _9 w* }% X% I* oAdjacent Channel Power Rejection
8 M9 Q1 i7 ?6 b' ]( g% zRandom Signals/ _& I- n8 b" ? {
Noise and Noise Figure7 q, ?. Z1 Y. \
Input Referred Noise
/ y! w7 G3 J4 ] \; ]0 j% hNoise Figure of Lossy+ I2 {& b/ ?. [; P8 V8 {1 N8 ~, e
1 m K. l9 f* [8 h* b) ~
3 [1 g! u+ W3 H) u& T; y8 oSystem Theory (1)( X0 U1 R( {3 q# I4 d2 u. q) B
Linear Systems
2 f1 n$ {' O2 d) R5 c ~+ s1 1 x ® y 2 2 x ® y
/ F! R: q* u9 x7 O1 2 1 2 ax + bx ®ay + by
6 d1 i, ?. B, F4 b+ O( c& ]2 i' c* l; hIf inputs x1 and x2 generate outputs y1, y2
t* j o0 p+ [( q8 U$ k6 ?For a linear system output can be expressed as a linear combination of inputs. }. Y7 F4 W* e6 q( m/ \
for all values of the constants a and b* e# k8 | F. F' ?9 [; B
Time Invariant Systems% ~- k* |5 p% p: A
For a time invariant system time shift in input results in the same time shift in output
% S, ~. W8 x4 U. k0 Yx(t )® y(t ) then x(t -t )® y(t -t )# f4 ?: ?8 s1 {' }- T
Any system that does not satisfy this condition is nonlinear
0 @% e* t0 e" Y' k' AObs. A system is nonlinear if it has nonzero initial conditions4 j" l( g* t5 g O9 _& T
for all values of t
& N1 A: Y! H! V/ S8 V% I1 g2 Q
: m" m( R) k& ?0 H" z) Z/ @ [$ u7 k- ]- p) s- B% [7 ]
: l& \/ Y! E; k9 u8 \$ Z% j2 F |
|