EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
本帖最后由 Heaven_1 于 2022-6-2 15:55 编辑 & r Y0 i. k7 m4 S8 g0 n! W
& e: i4 V, I! U+ |7 X4 l: B
MS35009描述 MS35009 是一款镜头驱动系统芯片,由于它的微步进特性,可以满足复杂,精致,低噪音的镜头驱动系统。微步进驱动功能控制模块集成在芯片中,可以极大降低 CPU的功耗。另外,芯片集成了直流电机与音圈电机马达驱动,可以满足不同的镜头系统。 特点 内置 7 个通道的驱动模块,H 桥最大驱动电流±0.8A SPI 串行总线通信控制电机 负载电压范围:2.7V--5.5V QFN44 封装 MS35009 pin=pin BU24025 MS35009封装 ![]()
; S9 x8 y, D9 ?" p& d6 y; e; F y( |* F% A( o
管脚图 ![]()
9 |, Q: @5 [1 t0 T* O' o0 Z# e# ]$ L( b; J: i
管脚说明图 3 R7 l( i8 e. Z4 {( M
6 M& D4 N! I1 V9 t$ p- W
& M5 M* P+ v: q. m$ V
$ ?8 N$ J5 {3 f. u& i9 o" H
内部框图 + b+ b: }% T/ p* t: O% k1 Z1 \$ v; M* E
" F4 h: [! n* T( q: a& r功能描述 系统模块介绍 步进电机驱动(第 1 到 4 通道) 内置细分的 PWM 驱动模式,最多可以驱动两个步进电机。 内置电压反馈的类似 D 类功放的驱动模式。 第 3,4 通道可以做为独立的直流电机驱动或者音圈电机驱动. 步进电机通过设置相关的寄存器进行行为控制。可以选择 1024 的微细分模式,1-2 相位,2 相位模式。另外系统带指令缓存器,当电机在运转当前指令时,设置后面的指令,从而电机可以持续运转。 电机的运行状态指示 ACT,与电机转动位置信息 MO,可以通过 STATExx 脚读出。 控制框图如下: ![]()
# S; R5 z0 D5 |7 I: U8 n8 W
( q: v& W4 I6 m i1 }% c( @直流电机驱动(第 5 通道) 直流电机驱动是电压型的 PWM 斩波控制。 此电机驱动既可以通过 SPI 设置寄存器设置,同时由于外置了直接控制管脚,也可以通过外部的管脚控制,又或者可以两者结合的混合控制。 SPI 模式控制: " w+ j3 o- V9 @! h3 r! D- N
( |; @3 R4 `1 D' L6 i![]()
6 e2 C$ _% W9 X+ `; m1 Z+ {) Z
3 d+ Z' r# R J% _电流型直流驱动(第 6,7 通道) 第 6,7 通道为电流型的输出驱动,内置恒电流模式的驱动器。 RNF 脚的电压与 RNF 脚的电阻关系,决定了电机的输出电流,内部集成了高精度的比较器来是电流稳定。 如果 RNF 脚存在寄生的电阻,将会影响电流的精度,需要特别注意。 电流型的驱动可以通过 SPI 来设置寄存器的方式控制,也可以与外部的输入脚混合控制。 SPI 控制模式:通过 SPI 设置电流大小,状态和方向。 / @8 x5 e# c4 Q4 z- M r# a5 d
! H f9 P! f/ U+ T" A3 i系统应用 ; h! o, ?: A) w' T! X. H
( s: G/ x/ C4 M4 w2 G; n
寄存器 $ c# a) {7 A9 T' w# ^* ^ r$ h( X
% ?8 L9 |& f+ C6 ? U
注: 1. 寄存器表中,xxA 与 xxB 分别对应于 Ach 和 Bch。 2.Ach 被定义为由 1ch 和 2ch 驱动输出,Bch 被定义为由 3ch 和 4ch 输出。 3.在复位(resetting)之后(包括上电复位和通过 CMD_RS 寄存器复位),所有寄存器都被置为初始态。 4.对于 Mode, DOV, Cycle, En 和 Rev 寄存器,写入的数据在 Pulse 寄存器写入之前等待,在 Pulse 寄存器数据写入完成后的 CSB 信号上升沿被应用。且 Mode, DOV, Cycle, En 和 Rev 寄存器有缓存寄存器,除这些之外的寄存器则没有。 5. 对于 Pos, FSP, DCM_Chop, DCM_State 和 PWM_duty 寄存器,写入的数据在数据写入完成后的 CSB 信号上升沿被应用,除这些之外的寄存器的写入数据在第 16 个 SCLK 信号上升沿被应用。 Cache 寄存器 此大规模集成电路拥有两组缓存器,可在电机正在运行时暂时寄存输入的数据,电机执行完当前任务之后会接续被寄存的数据继续运行。 另外,CacheM 寄存器用于选择缓存器的工作模式。 典型示例: (1) CacheM = 0 5 _# }) y, Y5 _% _+ e
( I9 Z3 Y9 m7 _: E在 Pulse 寄存器数据写入完成后的 CSB 上升沿,初次运行状态被确定。ACT 信号在 Pulse 寄存器输出生效时变为高电平,输出完成后变为低电平。在 Pulse 寄存器输出时输入的数据会暂存于缓存器,在当前任务完成后再被接续。 CacheM 寄存器置 0 时,两组缓存器生效,当这两组寄存器都被写入时(寄存了 2 组数据),BUSY 信号变为高电平,且不再接收新的数据输入。 (2) CacheM = 1 ![]()
/ p( k9 t" V- [8 G( g9 j- W+ \7 g% s
在 Pulse 寄存器数据写入完成后的 CSB 上升沿,初次运行状态被确定。ACT 信号在 Pulse 寄存器输出生效时变为高电平,输出完成后变为低电平。在 Pulse 寄存器输出时输入的数据会暂存于缓存器,在当前任务完成后再被接续。 CacheM 寄存器置 1 时,只有 1 组缓存器生效,当这组缓存器寄存数据后,BUSY 信号变为高电平,但仍可接收新输入的数据。新输入的数据会覆盖原先寄存于缓存器的数据。 典型应用图
5 t* S, V1 R0 u) n
4 i4 d2 C' {4 ]+ n$ ^/ t! j |