EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
目的: 为了让设计者更好的了解如何在材料,工艺和设备影响印刷电路设计,提供设计和布局的印刷电路组件的概念,给设计者一个基本的设计建议和NPI工程师一个基本指导。 $ D- P: `, ?% j
适用范围: 本程序仅适用于指导产品的生产过程中所需的要求。
& u- u8 Z( D: l
术语: DFM:产品可制造性设计(Design for manufacturability)。用来确定生产线的规划,使其设备满足公司产品、工艺和品质要求。 PCB:Printed Circuit Board印刷线路板; FPC:Flexible Printed Circuit 简称,柔性印刷线路板; layout: 布局设计
) q# x! U, w- n9 I, s4 o- o
职责: 项目BU负责与客户沟通,向公司内部传达客户信息; NPI小组的PIE/ME负责制作DFM报告,NPI组长负责主导召开新产品评估会议和DFM报告的审核,工程部经理负责批准; 新产品导入小组(NPI)负责评估新产品的可制造性。 # G% s8 _6 ^) u P8 n4 J
程序: 项目BU负责在新合同评审时,在客户有要求或者NPI小组评估需要时召集公司NPI专家评审小组成员对新产品进行可制造性评审,由NPI PIE/ME负责根据会议的结果在两个工作日内完成“可制造性评估(DFM)报告”; NPI PIE/ME将制作完成的DFM报告提交给NPI主管审核,审核OK之后,提交工程部经理批准; 工程部经理批准后DFM报告NPI主管转发给项目经理提交给客户或直接提供客户对应的工程人员; PIE/ME确认DFM报告中客户的评价与改善方案,以便作出相应的对策。 . j0 O' p! I$ B4 C1 `9 t' V7 m
1、PCB/FPC layout 1.1、印制线路要点: 虽然布置layout是运用的软件,但是要考虑线路的形状尽可能的简单以此缩减制作成本,直角形状的板子比其它不规则的形状的成本低且更容易处理。设计内部的拐角必须考虑板子的外形,避免暴露在外面。图1例举一些设计拐角半径的方法,依据IPC-2222,5.4.2另一个重要的参数。普遍使用的是印制线路板的厚度是1.575 mm[0.062”]FR-4的材质的。其它的材料厚度和需要使用的其余类型的可以依据各个供应商而在设计阶段定义不同。每一个细节方面,材质的厚度规定需要考虑拼板和贴装的因素。薄的板子处理时问题多一些,它可能需要额外增加相关的夹具来辅助生产;
( h1 R, v! R) L# U2 T
1.2、电气考虑: 间距导体(电气间隙)之间,导电模式,导电层之间,导体和导电材料之间,应精心设计,以尽量减少漏电引起的问题导致水分凝聚或较高的湿度。IPC – 2221标准建议的最低间隔(最小电气间隙)的印刷电路和组件为导体类型和电压之间的导体
+ L4 [" }- G9 t8 m
1.3、通孔 通孔是用来连接PCB或者FPC层与层的电镀孔,不是元件孔或者加强孔。通孔类型有穿孔、盲孔和埋孔。穿孔是一种洞,使电气连接的导电模式之间的外部层的印刷电路。盲孔是一种洞,使电气连接的导电模式从外部层导电层的内部格局。埋孔是一种洞,使电气连接的导电模式之间的单独的内部层。具体的差异可以通过下面的图2看出; 孔应当被远离表面贴装焊盘,因为它可能带走焊接料,从而导致焊接缺陷。它总是能够更好地连接通孔,以表面贴装焊盘使用痕迹。如果空间不允许使用微量的通孔和表面贴装焊盘,建议使用阻焊材质物料。帐篷型的通孔被填满或者覆盖着阻焊膏。Class 1和Class 2的成品最大的帐篷孔直径不超过1.0mm,Class 3 不超过0.65mm;最小的帐篷孔直径则要依据供应商的制造能力。 环形包围状孔的是一种普通的通孔,最小的环状是0.13mm(5mil)。选用泪状、凿洞和囤积设计 (如图3)是需要的,用来防止线路损伤。
$ [6 [# K% Q& I( K% y* t) A2 d# j
: ~7 W' m! }3 B+ ~
1.4、表面处理工艺 表面处理是来防表面氧化,防止氧化的导电模式不破坏导电性和可焊性的表面。常用的表面处理有喷锡、浸金、浸银、浸锡、OSP这几种工艺。 , h" p# k& r. q9 F4 [& `' _$ ^
1.4.1、喷锡 锡铅或者锡银铜涂层是采用印刷电路沉浸到焊料中,通过表面热处理,增压空气或者水蒸气来去除多余的物料称作HASL( 热风整平)工艺。因为厚度不均匀,有细间距的SMD元件的板子不能考虑用HASL的工艺。 , c9 q6 `7 m8 |) ?4 m, B3 t+ z
1.4.2、浸金 化学镀镍/沉金( ENIG )过程是通过一层一层的高纯度的金覆盖一层层的镍形成的。其主要功能ENIG是有较好的可焊性,使用寿命长,并适用于所有表面贴装和通孔组装。是铝线压焊的,符合RoHS要求。对于那些细间距、CSP、BGA之类的使用此工艺的较好。电解硬金可用于边缘接触/连接器多种插入性的产品。硬黄金往往被用作选定导体沉浸深度的控制。 7 D# O. a8 _5 \6 h6 p
1.4.3、浸锡 虽然浸锡工艺被用于其他行业多年,但是在无铅线路印制板表面处理上还是相对较新的工艺,还不太成熟。锡浸的厚度0.1um到0.5um,表面平滑、SMT贴装匹配性好,可焊接性好,缺点是使用寿命短,有锡须,可靠性差。 ' }; x( u+ J4 O: ?1 W8 G
1.4.4、浸银 薄银涂层能够直接沉浸在铜箔上,其厚度可达0.1um到0.4um。银涂覆能够防止铜氧化,表面平滑,适用于多种生产制造流程。其优点是可以运用于环境较差的地方。 6 e5 O' K# t9 T9 w3 a* Q" y
1.4.5、OSP OSP充当临时保护铜模式。一个非常薄的有机涂层沉积到铜表面来防腐或防锈。涂层会成功的溶化或蒸发之后形成防氧化的焊接铜箔。 OSP是一个低成本的材料符合无铅焊料,简单的印刷电路制造过程。它提供了良好的润湿特性,但可能无法承受多个过程的处理。它不能用于探测或作为接触面,因为它绝缘铜表面。存放时间短(最多6个月)和处理的困难。
7 R' o& {& b% L/ D F3 X$ c9 Z
1.5、阻焊 阻焊是一个保护层,防止导体氧化,处理后并在组装时不会连接。阻焊开口通常放置在选定的领域,将用于焊接。重要的是要保持阻焊0.076mm- 0.127mm[ 0.003”-0.005”],远离焊盘,防止侵占由于阻焊成像而形成假焊。阻焊之间焊盘(称为焊料坝)须至少0.076mm[ 0.003 “ ],使其可靠的粘附印刷电路。如果焊盘与焊盘之间的空间不够的话,其焊料坝必须去除。(图4) : ^: W' q% n5 ~+ R; x0 p( n
2、元件焊接区模式 通孔模式 通孔分为被支撑和不被支撑两种,一个被支撑的孔里面有固定钢板或加固物,它通常比不被支撑的孔更可靠,对于着重的机械元件,被支撑的孔更可取(例如:连接器和大的或者重的元件),对于被支撑的孔寻求不同于焊点连接的方法是不可能的。另外,被支撑的孔与不被支撑的孔的孔相比,通常需要更小的焊接区和更少的环形包围。不被支撑的孔的主要优势是比较一致的孔径尺寸使它能更好的配置和安装孔径。IPC-2220设计标准系列对于孔径焊接区的模式提供了大体的需求。通孔元件的孔的直径受各种因素的影响,这些因素的一些但不限制的因素是:铅陲的尺寸和误差,铅陲的倾斜误差,装配孔径尺寸误差,钻孔位置误差和组装位置误差。孔径尺寸计算的例子如下: 最小孔的直径=A+ A=通用的直径或者铅锤的对角线 B=铅陲的尺寸误差 C=铅陲的倾斜误差 D=装配孔径尺寸误差 E=钻孔位置误差 F=组装位置误差 =各种总的影响(RMS),包括铅锤尺寸,铅锤倾斜度,孔径尺寸,钻孔位置和组装装配。 那么,对于A=0.60mm,B=0.10mm,C=0.05mm,D=0.08mm,E=0.05mm,F=0.10mm最小孔径直径=0.6+=0.78mm,名义上的孔径尺寸=0.78mm+0.08mm=0.86mm,最大孔径尺寸=0.86mm+0.08mm=0.94mm 对于可以软焊的通孔可以使用下面这个方程式计算:最小焊接区尺寸=最大孔径直径+最小环形包围的两倍+标准装配误差。最小环形误差通常受装配容积的影响,尽管组装容积也可能影响它。装配机构可能涉及到环形周围在可焊性及焊接的可靠性的影响,这种可焊性是指在正常机器设置的或可接受的情况。标准构造误差在IPC-2221中提供。为了将在波峰焊接过程或焊接区焊接中产生的焊桥减少到最小,建议长方形焊接区的孔径倾斜的位置少于2.54毫米。
8 F: c& ?4 D# ~" c) y! H
一些设计可能需要将通孔钢板连接到大的导体区域(如地面或者电源),这些孔的散热设计是在焊接过程中防止热效应的产生。典型的散热设计总的web宽度是焊盘的60%,这个web宽度能靠将总的web宽度分成需要的web数量来计算。例如一个1.00mm的焊盘有总的web宽度0.60mm,它能够用4个0.15mm的web或3个0.2mm的web或2个0.3mm的web连接到大的导体区域。 关于通孔更进一步的信息和散热设计体现在IPC-2221标准系列中。
2 d! j4 a+ U0 m1 g) s9 Q% ]
表面贴装焊接区模式 一般来说,可取的模式设计是基于一个公司能够生产的产品量,在没有公司定义的设计时,可以选取象IPC-7351的通用表面贴装设计和使用模式标准的工业标准作为参考。但是,对于特殊的元件需要特殊的焊接区模式设计为了更好的实现设计特征或运作,或者非工业推荐元件包装,推荐首选元件制造商能被用的焊接区模式,万一首选元件制造商没有推荐焊接区模式,相同包装的元件可以使用。DFM小组有权利选择为自定义元件创建他们自己的焊接区模式或者基于工业守则或者工业标准(IPC-7351)来评估不常见的包装。 6 M [3 e% D3 y p4 W- Y
有些供应商或者工业推荐的焊接区模式不能满足组装设计的例子;如果是那样的话,焊接区模式评估被推荐来完成目标设计。例如 ,对于贴片LED有益的位置精确度是被要求的,典型推荐的焊接区模式由于大的焊盘不能完成要求,在位置上造成了很大的变化。一个有小焊盘的焊接区模式(比元件终端尺寸稍大)对满足精确度的需求是更合适的。 6 S$ T6 {% T1 X. h; r& x% k# j& T2 r2 S5 t
表面贴装焊盘设计参考 1) CHIP矩形片式元器件 ! R4 }& F: M& y' R
* W7 n& G8 z( d+ j
, V) z+ _ m" `+ p# X/ v
X=1.0~1.2W Y=T+b1+b2 b1=b2=0.3~0.5mm G=F-K (K系数,一般取0.25mm) ) K5 _4 {4 O6 y! i: \/ r0 y m
M6 n5 ` T6 E7 T
3) BGA
/ C& m& \# M9 p9 [
) `) P, @1 P1 z$ [& C7 |; v1 u
7 y" y9 n6 u9 Z3 H' ]! ~. B
2.3 芯片焊接区模式 本程序只涉及到基本理念,可参考IPC-SM-784标准。 2.3.1 印模尺寸和印模结合垫 印模结合垫长度=印模长度+2*垫片间隙(P) 下面图表中是推荐的P的值 2.3.2、印模结合垫和尺寸(图5、图6) 对于铝超声波连接,推荐最小的印模结合垫尺寸(A)是0.1016mm[4mils],它到边沿的最大距离(B)是0.1524mm[6mils]。 . e, u f0 B5 ^: o& p1 s8 s+ B
+ n& x+ i" ?1 `2 L! ~% t1 D+ L/ A
7 _% }$ i7 B2 ^: f9 l
3、结合柱(第2种结合)(图7A) 推荐的印模结合垫到结合垫的间隙是0.508mm[20mils]。 ' r0 c1 y! t5 X$ N) `
8 z+ Z( t' x* G0 N, w0 b) ^" M. [
如果印模直接连接到基片(没有印模结合垫),推荐的印模到结合垫的距离是0.762mm[30mils].(图7B)
4 E1 Y1 ~9 Y. ?/ L, R0 _. K
2 B& J$ u" ~; |* ^, P6 k! r. U. m
4、接线要求 在某种程度上,线应该尽可能多的设计在印模的中心,印模结合垫和结合垫的排列如图8所示:
( c8 Z, G1 Q7 ]# S2 A
! i G' d$ G9 u
推荐的结合点(E)之间距离是从1.016mm[40mils]到2.54mm[100mils]。推荐的电线(F)之间的间隙是电线直径的两倍(2*电线直径),直径的最小间隙是被允许的,但是最小电信距离应该进行校验。接线的角度应该大于60度小于120度,图9所示。
" ]3 r4 T+ t6 W/ N$ w
* e2 f0 s% s9 h7 v
COB表面涂层 推荐的连线图层是在镍(厚度:2.0um~8.0um[79uinch~315uinch]上镀金 [厚度:0.05um~0.08um[2uinch~3.15uinch]。关于连线表面的更多细节体现在IPC-SM-784。 ! u1 T0 `9 m) Z
干扰距离(图10) 推荐的元件限制高度和到最近的原件或障碍物的结合垫距离如下表所示。为了避免制造问题,建议在审计前期核查元件与更高抛面需要的间隙和元件高度小于7.00mm。
0 N# u+ W5 C, I' S4 e& j
" x8 G4 B A! E
元件的间距: 有四个主要的因素影响元件的间距。它们是电磁场清除要求,元件的变化,印刷线路板的变化和放置的精度。其它的因素,为检查和维修元件的可见度,丝网印刷的记号,基准的位置,工具转空的位置,设计电路线安排的空间,许多发热元件,测试的通路,和可利用的机器管口在一定的程度可能影响元件的放置空间。 ( X. P, p7 E. \- |( o
有许多方法来决定电路的元件需要的空间。其中一些方法在IPC-7351和IPC-1902中提到。最小元件的空间通过加最小电磁场清除距离元件,印刷线路板和装配总的影响(RMS)方法可以计算出来。就是:最小元件的空间=最小电磁场清除距离+SQRT((元件变化)2+(印刷线路板的变化)2+(装配变化)2)。 例如:最小电磁场清除是0.13mm,元件变化是0.15mm,印刷线路板的变化是0.20mm,和装配变化是0.1mm是2个调整的元件。最小元件的空间=0.13+SQR(0.15 2+0.20 2+2*0.10 2)=0.42mm。
; P4 j: L9 u) Y9 K7 H/ U! t6 M3 i
元件靠近印刷线路板的边缘(图11) 另外主要关系到元件靠近印刷线路板的边缘是有能力去掉来自面板的电流而不会造成损害元件。印刷线路板的设计者必须考虑到在元件的放置到印刷线路板边缘时的分板方法。同样重要是要考虑到印刷线路板边缘热导的清除。 对于分板,对于小的侧面元件,建议最小距离是离元件到边缘是1.0mm[0.040”],这样可以保护到切割金属刀片对元件的损伤。对与大的侧面的元件距离需要重新计算。
0 D" Q, ~! A) w6 @
, F9 D* Y& c' G' C2 a; E
路由方法需要较少的部分边缘清除方法相比得出方法。建议清除至少从边缘0.4mm的区域,分裂标号。边缘没有标记可以清除的,可以在印刷电路以外,提供有足够的空间给路由器控制。 ; Z2 s) K" k9 \1 \3 C- j4 J
+ ?* @- p! S# ]' Z7 b b& x5 w
元件的定位: 元件的定位在焊接,粘贴和回流焊过程中没有很多影响,可以用有益的方法,如来消除机器程序影响,和更多的目检或机器自动检测。元件的定位可以帮助最短的时间内发现最小的发生的错误,只是小的因素的影响。看图13A是建议焊接,粘贴和回流焊时元件的定位。 元件的定位在波峰焊过程中是有很多问题的。如果元件没有正确放置,波峰焊速率的增加,可能会开路或短路。芯片需要正确定位来防止引脚虚焊。双列芯片正确定位来防止引脚连锡或没有焊上。看图13B是建议在波峰焊过程元件的定位。
: W4 K: n* ]& O$ | U # r9 R8 q/ V Y# T/ I" j; l3 _6 N+ G
|