TA的每日心情 | 衰 2019-11-19 15:32 |
---|
签到天数: 1 天 [LV.1]初来乍到
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
一、源代码
0 k( x" J. {- @3 B0 q
- i4 H. V1 A) s- Z- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- %
- % Multi-Objective Golden Eagle Optimizer (MOGEO) source codes version 1.0
- %
- % Original paper: Abdolkarim Mohammadi-Balani, Mahmoud Dehghan Nayeri,
- % Adel Azar, Mohammadreza Taghizadeh-Yazdi,
- % Golden Eagle Optimizer: A nature-inspired
- % metaheuristic algorithm, Computers & Industrial Engineering.
- % To use this code in your own project
- % remove the line for 'GetFunctionDetails' function
- % and define the following parameters:
- % fun : function handle to the .m file containing the objective function
- % the .m file you define should accept 'x' as input and return
- % a column vector containing objective function values
- % nobj : number of objectives
- % nvars : number of decision/design variables
- % lb : lower bound of decision variables (must be of size 1 x nvars)
- % ub : upper bound of decision variables (must be of size 1 x nvars)
- %
- % MOGEO will return the following:
- % x : best solution found
- % fval : objective function value of the found solution
- %% Inputs
- FunctionNumber = 7; % 1-10
- options.PopulationSize = 200;
- options.ArchiveSize = 100;
- options.MaxIterations = 1000;
- options.FunctionNumber = FunctionNumber;
- %% Run Multi-Objective Golden Eagle Optimizer
- [fun,nobj,nvars,lb,ub] = GetFunctionDetails (FunctionNumber);
- options.AttackPropensity = [0.5 , 2];
- options.CruisePropensity = [1 , 0.5];
- [x,fval] = MOGEO (fun,nobj,nvars,lb,ub, options);
- I* _8 h- g# u- z. B- h
( ?/ p, K; y* m5 x) s5 ?
, Q, j- I4 K; ^; u: B8 W. c R
* c8 Q1 f3 J& ?二、运行结果
( K# m- b) n- x' J( S
/ Y2 d! S' Z9 ?1 L* q
|
|