|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
用bp神经网络确定抽水试验含水层参数。但所求结果与实际相差较大7 y" K' Q0 |, B5 K$ s* M
clear all; close all;clc- U9 y$ s1 [3 z! c1 d" F
load t.txt %导入数据9 m0 P1 y$ D* ^6 m1 |( t
load newinput.txt
* m6 e6 G5 }# O m0 |% K1 w% 随机生成测试和验证数据
' H% z# q( l; l" j# ZT = 0.12 + 0.04*rand(1,120)
f% t9 M- O9 T+ C _% U1 W* v9 H' L# TU = 0.0002 +0.0001*rand(1,120)
- z1 s3 z! {; E f. U
3 f6 r N2 {; o%根据公式计算求得输入数据' V& P- K- e1 F5 e- m2 X
+ w, z5 I N' |1 DM=zeros(18,120)
, r" @0 ?' N. b( c' Q- Sfor i=1:120! I* @4 C5 X4 Z: D8 P
for c=1:18; ]) x' V9 r( F- A- Y2 x1 v* Q$ }
m=43*43*U(1,i)/4/T(1,i)/t(c,1);n=-0.577216-log(m)+m;s=1*n/4/T(1,i )/pi;M(c,i)=s;
0 M$ x! u! Q' ~ m end0 H0 F z& H* M8 p
end
, c9 U3 Z8 V: G; i( B! a1 _2 ?, g5 s, K
data = [T;U]
) s1 A, x. P* e: e
' ^% M$ ?9 F: P4 B1 i( x# Sp = M
& |1 x5 w/ d+ H6 o3 gt = data0 `4 y, L. F0 ~
% 划分数据,分成测试和验证数据7 ~5 ^' G. m/ Q0 I- `% |" N# e
[trainsample.p,valsample.p,testsample.p] =dividerand(p,0.8,0.15,0.15) ;
4 X% E& T3 g' ]. t5 {[trainsample.t,valsample.t,testsample.t] =dividerand(t,0.8,0.15,0.15);
% v7 L3 j! ^1 @. f5 X q4 u/ f! s( K3 C
% 数据归一化处理
m3 ~& g; f, {[trainsample.P, ps] = mapminmax(trainsample.p,0,1)
: T3 t; Q3 @ k$ w* q# ?4 v$ |testsample.P = mapminmax('apply',testsample.p,ps)$ v5 T1 ]: H! v! V9 K# r* ^- z
[trainsample.T, ts] = mapminmax(trainsample.t, 0,1)
) V, C& G: E0 r( s; L9 x# ~' {4 i8 W* ~: G% h0 \
% 初始化网络
; C5 o4 Z$ l# P, M7 rnet = newff(trainsample.P,trainsample.T,[1,27])
/ x. _2 j7 O7 h# L) v6 z/ \% l+ Y9 d8 t" v" G' j* l, \$ r$ @4 F! U5 u
% 设置网络参数
6 r! f1 _2 T3 Fnet.trainParam.epochs = 50000;9 x+ _7 m+ [% z7 T
net.trainParam.show=50;2 h k" {$ b: c/ n
net.trainParam.lr = 0.68;$ x9 K" _% o0 M) p+ ~8 a
net.trainParam.goal = 1E-15;
, M" L% c, L& W' S
9 ]: ~0 g9 y( r+ c0 F; M6 Ynet.traiNFCn='trainbr';
0 a" H+ D- ?, R$ {6 I t[net,tr]=train(net,trainsample.P,trainsample.T);
6 m* C: j- c2 P# k! `0 `* C0 p9 i2 l' T* F8 `. r @
% 仿真处理1 ?3 k# g# |0 Y; O3 h* x
p_sim=sim(net,testsample.P);
9 C7 T# D1 o6 U6 V7 _: t" u" UP_sim = mapminmax('reverse', p_sim, ts);8 @, k9 j/ l7 K( t6 R, j
: D2 Q4 K: x x4 W$ v% g, U3 O5 t% 数据预测
1 I( r" P8 L: Y: I& Snewinput = mapminmax('apply', newinput, ps);
# r; J1 t- e/ z E' k. [" G6 o/ TnewOutput = sim(net, newinput);
0 _& o: a1 E9 MnewOutput = mapminmax('reverse',newOutput, ts): R: n4 |% \& L3 H9 F
) m3 C8 V2 z( h7 P7 v9 `0 `! Y5 n( t% ^
# U6 n% f1 T% \/ ?( _! {( z. c. i# M |
|