波峰焊是指将熔化的软钎焊料,经电动泵或电磁泵喷流成设计要求的焊料波峰,亦可通过向焊料池注入氮气来形成,使预先装有元器件的印制板通过焊料波峰,实现元器件焊端或引脚与印制板焊盘之间机械与电气连接的软钎焊。
波峰焊的主要工艺流程:将元件插入相应的元件孔中→预涂助焊剂→预烘(温度90-100℃,长度 1~1.2m)→波峰焊(220-240℃)→切除多余插件脚→检查。
; D& g' G; j+ C# B
; @% h2 p; z/ O
二、失效案例分析
# W& J! W, {1 ]
2.1 案例背景
某PCB板在完成波峰焊后外观检查发现SS面(即波峰焊接起始面)整排1.5mm插件孔均出现缺失的现象,其余位置外观上锡良好,未发现孔环缺失现象,不良率为0.67%,其表面处理为有铅喷锡(HASL)。
不良板孔环缺失位置确认如图2所示:
# J% s0 `; A2 k+ }/ ~
$ Y; D7 a1 m' G1 m1 P
通过立体显微镜观察PCB板不良位置的孔环情况,发现不良孔孔环位置无完整的铜层,部分位置已裸露出基材。
通过查找相关生产信息可知,该PCB板的生产流程包括化学沉铜、负片电镀(最小孔壁铜厚要求为20μm)、磨板、酸性蚀刻、有铅喷锡等。
9 n0 w+ ^: p. M& N1 _/ S l
2.2 失效模式分析及定位
根据该板的生产流程可知,可能导致孔环缺失的原因主要有:酸性蚀刻的药水对铜的咬蚀,有铅喷锡对铜的溶蚀和波峰焊接锡对铜的溶蚀等。现对不良板的孔环缺失位置和板上其它未进行波峰焊接的PTH孔进行垂直切片分析对比,如图3所示:
1 W) R, f( w. r, }
/ H% y# Y1 n! m/ Z$ b# I; O+ w
从图3可以看出,对于表面处理为有铅喷锡的PCB板,未进行波峰焊接的PTH孔的孔铜仅被喷锡过程咬掉4.4μm的厚度。而波峰焊后的PTH孔在波峰焊接起始面有孔环缺失的不良现象(如孔环缺失位置-2所示),焊接终止面孔环的孔铜完整,因而可以排除不良孔的孔铜缺失是由有铅喷锡对铜的溶蚀导致的。另外,在不良孔的孔口位置有部分铜残留,残留的铜层厚度为14.9μm,阻焊下的铜层完好无缺,厚度为46.6μm,说明在阻焊工序之前孔环位置孔环铜厚满足要求,可以排除不良孔的孔铜缺失是由酸性蚀刻过程中被药水咬蚀导致。因此,推断不良孔的孔环铜层可能是在后续进行波峰焊接时出现异常,导致铜被锡溶蚀的失效。
9 \6 B- q, }" a( T# `
2.3 失效模式确认
为了进一步验证不良孔孔铜缺失的真因,现对失效孔环位置进行垂直切片分析,确认其失效模式,如图4所示:
; F0 D# _' \; |: M& T2 b+ Y
\! }! B4 u- j! x0 T$ ?( S
不良孔的孔铜在波峰焊之后,沿着焊接起始面到终止面,孔铜由薄到厚渐变,孔环、孔口和内侧孔壁铜均被逐步溶蚀,且焊接起始面的孔环和孔口铜层优先被咬蚀干净,而孔内远离波峰面的孔环和孔壁铜则相对完整,被咬蚀掉的厚度较轻微。
; i, a6 y1 ?9 e5 H. k
2.4 孔铜的浸析机理简析
在焊接过程中,焊料处于熔融状态,浸入熔融焊料的PCB板的铜会向锡中扩散和溶解,在生产中将这种现象称为浸析现象或“溶蚀”现象。发生浸析现象的本质,是由于金属铜与液态焊料的金属锡之间存在着良好的亲和力。
波峰焊接所采用的焊料分为有铅和无铅焊料,在各种焊料中Sn都是主要成分,铜在锡的溶解率取决于许多因素:焊接时的温度、焊料成分,以及焊接时间和焊料的流动速度等。在生产过程中,这些参数异常可能会导致孔铜被锡溶蚀的不良现象。
4 Q% ^0 k! k( E; z( ^
8 P8 j. o7 f6 |( b
三、改善建议
# C! s7 a3 U" b. o1 C/ |% g2 q
铜在锡的溶解率取决于焊接时的温度、焊料成分,以及焊接时间和焊料的流动速度等因素。因此,可以通过以下方法控制铜的溶蚀程度:
(1)正确设置波峰焊的温度曲线,并通过定期检测实时温度曲线来调节温度曲线;
(2)适当缩短焊接时间,避免PCB板的铜长时间接触锡料;
(3)定期清理锡渣,加强设备的日常维护,让设备可以正常工作,防止出现卡板、波峰不均等现象。
- `. `8 H5 n& C( t1 q3 w. t
四、结论
; r D+ e" b: i! Z" b
在波峰焊中,一些生产异常会导致PCB板的插件孔浸入锡料的时间过久,孔铜会被逐步浸析溶解,溶解在锡料的Cu随着时间的延长会越来越多,会导致锡料的黏度增加以及锡料熔点上升等问题。
在实际生产中,应规范操作,严格管控焊接温度和焊接时间等工艺参数,提升人员的操作技能等,防止PCB板在生产过程中出现孔铜溶蚀的失效现象。
$ @8 I! M# e" s9 T
1 P4 n/ \4 H R0 s8 r