|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
这一题就是已知初始点,然后求某一点到三个圆的距离的和的最小值。使用的就是大名鼎鼎的Gauss-Newton方法。这里要求雅克比行列式,由函数 jacobian可以求出。所以这就减少了许多不必要的麻烦。 * `; ]! V8 B3 [1 Z# W6 [. i
! u( F! s5 `" o& ]8 k
代码如下: " B: D) D2 v* I" y6 O
2 ^1 W) \7 U& D- 6 Y: Z/ T4 C0 w6 g0 P- k
" E; T J2 [/ c& |) U' e; B* R% using Gauss-Newton method
, T( f2 n% N; |. W. h% B$ g( x2 H, l$ N+ n
- 3 H/ h: \. \9 r
2 U" w5 O* J$ e; m0 v! ]% initial point(0,0)9 q% l7 u/ `% x' E% l! @
: g# B; X7 o, P3 v5 O
- & [+ E6 ^+ h' \( Y" \! j
$ S) r5 w* c- k9 j3 `4 p: j
% 1、with circul point (0,1),(1,1),(0,-1)
# U, y! N8 s9 t- v* T% K: C3 ^( q8 T, v% h6 X' J0 V# R P
* a+ G' m* B# q" f4 s9 s4 F* u$ {+ e b3 E/ V! ~9 \
% 2、with circul point (-1,0),(1,1),(1,-1)
0 d2 P/ @9 R3 {; M% [8 V! M- ^4 m5 g5 |- {9 |, v
- 9 i2 ~3 r. g) D9 i0 F
q7 O; Z; y+ o8 P u, f" Q3 k3 k
% its radius is 1
Q* a+ H5 k. B; q$ V K: Z* I, J, P# K$ z- g( s3 s* Q$ o
- & u# N, k2 V4 o( Q
A- f$ _' d" [# {5 O1 W* g9 u! o% output :the sum of distance is the minist3 H/ R, V5 z8 [) R1 S& m
% f1 Z9 A9 o1 W7 ?# q
3 q; Z( m! y# A9 ]( ]" ?/ P& \) F8 A! @! G
function page_237_1
6 ~" h7 B% W# s# K- u- o. C) M6 G7 _- m1 n- r X
9 Z) Q' n+ s% g0 L0 r8 H5 `6 K6 q
format long) h6 o7 w# Z) f3 Z$ T
: q6 c2 J# s N/ v: j+ Y
O; }" h$ m/ B0 z4 @
; _- B$ @2 e, y/ v$ asyms x y
$ G A- K' s$ }5 T+ c8 ^4 E. N& C5 C' c- n$ F0 l+ K7 `
+ t4 F' J' y5 w" p: l: }3 `0 W1 H: Y- B# P
r1 = sqrt(x^2+(y-1)^2) - 1;
2 h3 p5 {0 c# {& X0 h1 z9 d5 l
% E4 V/ V; {% l; t' L' [8 R6 \
& w* T% G& S9 }5 x; `, O
0 A+ F3 A% u+ @% Dr2 = sqrt((x-1)^2+(y-1)^2) - 1;) `8 N0 h2 i; _" B
1 z* m% Q: D, x+ h/ [1 D
) u9 k$ D' n7 ]: x; o7 F& l3 }$ C! U+ r J
r3 = sqrt(x^2+(y+1)^2) - 1;7 R# Y- ~$ U8 I; @( Q
9 X( k" w2 h/ Y, E9 }
# T) p3 g3 k7 C1 g& y M
! C0 d! S$ F' ?8 K' Z$ J! zrxk = [r1;r2;r3];5 s1 M- l& f( b; D0 Z S# r
. t7 q, q9 X9 y5 E; Z. I: X; x- 0 ]0 N& v7 v. l. O$ W
. U; U# [% ?3 E+ N5 i# O I7 [
Drx = jacobian([r1;r2;r3]);
$ u, d; Q2 w' o! A7 p5 m' ^% h: Q. H/ d; s, _ V2 X
3 Q8 X3 e/ u- e6 {3 d7 w
, v2 o6 [( c' X0 \1 q" I- bDrxT = Drx';: _4 X4 l5 b. N! i: o
5 ?0 U- @3 [/ F
- # s' ? l1 c3 E n0 F6 N7 {* T
* G- I0 d5 a: o: ]
DrxTdrx = DrxT*Drx; %Dr(xk)TDr(xk)5 `4 V/ g ~7 g. a- {9 X8 y" o
2 i4 R X, z; H. B
0 R4 U' b3 r0 {0 Q
0 d. \, K+ S6 e$ e% aDrxTrxk = -1*DrxT*rxk; %Dr(xk)Tr(xk)3 ~% w2 f& p u
* F$ ^* d, K# l, {+ G
- : u9 D' U- q: z2 X! ?
Y8 D6 v6 ]! b- Q0 O2 I6 R%vk = DrxTrxk\DrxTdrx;
3 P! T3 B/ W. \8 H7 a: @: s" L5 ^2 q9 Z) j, Z
7 _: j- a, T8 @6 {# f( |2 v: L' _4 p
DrxTdrx_= subs(DrxTdrx,{x,y},{0,0});
5 C9 o: x7 h5 S! w0 K1 \ W4 A" D& z
" P% t+ o2 S: f o j
7 W8 c4 ?7 ?3 @
% r9 O" t# }; u2 g/ t% vDrxTrxk_= subs(DrxTrxk,{x,y},{0,0});
: c+ r0 Y5 [3 ^ o7 `' i7 V) r
- - B) G, I+ c# K, y5 z- B" ~. \
5 o0 a4 ^ v( S @8 l
xy = zeros(2,1);
+ [) S6 o; L! L9 w. ]4 ^- J( X
4 \' O. N7 t$ S
) d5 E% c$ F4 Z
4 M/ b$ s5 h5 w* S: z# C' s( lfor k = 1:15% @# ^0 b8 _. @4 c5 d9 G
S0 Q3 h% E. }/ g! [! z$ f/ m- - n2 U3 D& f" R; \
, ~1 l7 @" F9 D( {' H- G v = DrxTdrx_\DrxTrxk_;8 C8 ^) z6 D" o# x4 ^2 W# t [
: |2 q1 @: y/ j% W/ c
- " G, Z( h. |7 C# t: o2 D
& W1 f- p3 A" S/ D0 r, M2 N" U- M% ] xy = xy+v;
w: u' _8 F7 ?/ u3 @7 K! C/ ?* I/ J3 I3 ?% H. L7 a+ v
. R: S$ Y) Y' a. o9 k
9 L5 _# E, S3 W! Q, ^ DrxTdrx_= subs(DrxTdrx,{x,y},{xy(1),xy(2)});
- L: b- I0 I X2 o/ S2 U, l7 Z S8 s/ N2 {9 B0 x* H
6 W$ g P5 H/ O/ ~7 Y; u
% B* J- T% h6 b+ u. O. } DrxTrxk_= subs(DrxTrxk,{x,y},{xy(1),xy(2)});
: O3 ]- Z9 W- A; O4 r
% ^9 L+ m( h8 u, h+ w3 f' u) [
2 u& O; M5 n' F4 T! I0 Z, y* F z
! v, l: n# b W7 C/ A/ M. lend+ j. U) t0 U1 p+ [
' f# a' ~5 J, D& Z& u7 l6 \
* F% y% R: N; \; k% C6 X8 G8 B7 _, \- p. a L
disp('a with circular initial vector(0,0),Centers(0,1), (1,1), (0,?1)and all radii 1,the point is');1 l& _ _: A+ g
! i: f& x- k9 D, Q/ x! \* A. D+ d
- 8 ~5 I8 \; ^8 r" i
4 b( g0 y% v1 F# g) N- yvpa(xy,6)0 n2 T: m' w2 E# W: G1 S6 ]+ H
3 c% V; c9 t) K
q) M2 W, I1 h3 @) K0 i* f7 [+ D% a) R/ ^( }% V
7 d6 O5 e/ M' t2 p. `2 V0 Z
|
|