|
2 SAW RFID系统设计: i4 e1 s$ d' a( @. L) [" c
2.1 SAW标签设计
0 ?1 o p) N; u8 }, g+ ] SAW RFID标签[3]主要由叉指换能器、压电基片、反射栅和天线组成。) A% [3 J! t( y3 v
信号在标签中是以声表面波的形式出现,并在基片表面传播。当被测物体的温度发生变化时,声表面波发生频偏,同时按照一定编码规则将变化了的声表面波刻在标签的反射栅上,反射回来形成一系列的声脉冲串。由于反射栅按某种特定规律设计,其反射信号表示规定的编码信息,阅读器接收到的反射高频电脉冲串则带有该物品的特定编码,通过解析和处理,解调出反射栅的编码信息,达到自动识别的目的。同时根据FFT算法提取频偏值,进一步得到被测物体的温度信息。1 w d8 w) S6 Y- W6 z a2 ]
2.2 射频前端模块设计 S* \9 D+ _, l3 z7 Q. m6 M
传统射频识别收发机采用超外差接收结构,成本高,电路复杂,不易集成且功耗高。结合零中频[4]的特性,本文采用零中频结构,包括本振器、发射模块和接收模块,克服了镜像频率干扰,降低了开发成本。
* {+ Z, d$ L& d2 x2 h9 G% u 2.2.1 发射电路的设计
8 [1 l' l6 I v' W9 p1 {; V ?- Z 915 MHz的发射电路如图2所示。采用LT5519芯片作为上变频混频器,RF输出带宽为0.7 GHz~1.4 GHz。用CASCADE软件设计了π型衰减器,R1=24 Ω,R2=R3=220 Ω,则衰减4 dB。带通滤波器采用B4637,中心频率为915 MHz,带宽26 MHz,插入衰减2.5 dB。可调增益放大器(VGA)采用Sky65111,输入带宽为600 MHz~1 100 MHz,根据标签和阅读器的距离远近,自动增益控制(AGC)模块自适应地调整VGA的增益,使阅读器能够正确接收到标签返回的信息,最大输出功率达33 dBm@915 MHz。 |
|