|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
摘 要:为提高人工神经网络的逼近能力,该文从研究隐层神经元的映射机制入手,提出基于量子比特在 Bloch
, p) D3 G3 U* H9 {$ q/ p! ~/ a- Z球面的绕轴旋转构造神经网络模型的新思想。首先将样本线性变换为量子比特的相位,并使量子比特在 Bloch 球面- S$ j# O/ K" {/ w: C1 V
上分别绕着 3 个坐标轴旋转,旋转角度即为网络参数。然后通过投影测量可以得到量子比特的球面坐标,将这些坐
9 Q& m! Z& X; i8 `5 Y) t标值提交到隐层激励函数,可得隐层神经元的输出。输出层采用普通神经元。基于 L-M(Levenberg-Marquardt)算8 j3 L2 L& h9 u" F) h1 @
法设计了该模型的学习算法。实验结果表明,该文提出的模型在逼近能力、泛化能力、鲁棒性能方面,均优于采用
7 g7 _# }$ H; d+ f3 A" CL-M 算法的普通神经网络。
) i( s* \- k1 ]7 E. B关键词:量子计算;量子比特旋转;量子衍生神经元;量子衍生神经网络
* h, ~: I a, i1 引言
; G0 _1 [, O+ m& N4 ]严格说来量子神经网络是完全采用量子计算机
/ B2 m. X, u- U( Q8 G2 s! }7 k0 {8 G制构造的神经网络。由于量子计算在普通计算机上
0 \. _: Q1 g5 o% s5 ^2 [# k无法实现,所以纯量子神经网络目前尚无法仿真。 G# Y& u* x5 W- Z" H3 \
一般说来,通常量子神经网络也指借用一些量子计
5 c: ^; n/ c0 {9 g( k/ K5 r1 ]1 n算的思路,或受某些量子计算原理的启发,采用经 `4 F5 C3 k" b- J" K; k ^
典方法设计的能在普通计算机上运行的神经网络,
' f* A! L* B4 ]# a8 ^这种模型也称为量子衍生神经网络。量子神经网络
( J' V& A5 { K# q# V+ G" e4 `, W
出现于上个世纪 90 年代。1995 年,Kak[1]首次提出
6 H. }; H6 Y" @: O' L% l; @了量子神经计算这一全新的计算模型。随后
+ W* Z* I( {* X. e6 `; FGopathy 等人[2]提出了基于多级激励函数的量子神; w/ T0 _3 Z* A! Y0 y* H
经网络模型,Ventura 等人[3]提出了具有指数级存储
' b! k* C% b0 @# _. j% a/ C9 t: O# _6 o容量的量子联想记忆模型。2000 年,基于多宇宙量
5 t2 i7 I: |' E+ e' Z子理论,文献[4]提出了具有多个宇宙叠加的量子神$ s8 t; ]4 v( ?/ U+ I
经网络模型。国内有关量子神经网络的研究是从中! q* Y$ o3 l" L; m7 V
国科技大学开始的。2001 年解光军博士和庄镇泉教, i& I7 C* @- v9 B ], D( i1 B$ a
授首次在国内撰文阐述了量子神经计算的概念[5],随/ [* f1 D `0 j
后解光军等人[6,7]在深入研究通用量子逻辑门工作机$ x0 G6 E$ `7 z! u+ _+ w
理的基础上,提出了基于通用量子逻辑门构造量子
" M4 W& n5 s: ^! B5 g神经网络模型的新方法。文献[8]提出一种求解异或& k" V" q( O4 ^; w
问题的量子神经元学习算法。基于量子旋转门和量' L* ^( r/ m0 z& ?
子受控非门的物理意义,文献[9]提出了一种基于通2 h/ w8 C3 I/ g3 J; ~! N
用量子门的量子 BP 神经网络模型。文献[10]提出了% W5 T4 h5 Z2 c- v, @% M; P
一种基于量子权值和量子活性值的神经网络模型。
( U) C! H8 S) c0 Y t) X1 a% `% s; `
8 p+ q. o. Z6 ]) E0 s9 [. F$ Z) N
- H# F8 x- ]8 @' N& ^
8 u$ B, ]- V9 l) }* h$ u附件下载:+ x* m0 f% M1 E' e
]* q& h- G9 C- \+ k
|
|