找回密码
 注册
关于网站域名变更的通知
查看: 424|回复: 1
打印 上一主题 下一主题

#技术风云榜#基于非支配排序的多目标PSO算法MATLAB实现

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2020-11-12 13:35 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
#技术风云榜#基于非支配排序的多目标PSO算法MATLAB实现) q' D, {, ]1 j
/ v( ^8 b( b: i! t/ E
这一篇是Xue Bing在一区cybernetics发的论文,里面提出了两个多目标PSO特征选择算法,一个是NSPSO另一个是CMDPSO。
' A' Z% [6 h/ S' d  Z  Q& f+ ~
: }8 t) V4 W( O6 ?伪代码
1 [3 a* w! o  c# `# t% q/ h
7 Y2 @4 Z& r. }0 o0 {& a 6 r1 u. |! o8 Q, F9 D

( X$ {3 @# y+ {
, D4 x% i& K$ E9 C$ P  E2 Y具体流程( ?- ^: I5 I* y9 n7 ^
  • ①划分数据集为测试集和训练集
  • ②初始化PSO算法
  • ③迭代开始
  • ④计算两个目标值(论文中是特征数和错误率)
  • ⑤非支配排序
  • ⑥拥挤距离度量并排序
  • ⑥对每个粒子从第一前沿面选择一个粒子作为gbest,更新当前粒子
  • ⑦调整粒子群
  • ⑧迭代结束返回
    * F3 F$ C# S! H/ j2 e

/ ~9 d+ {* u1 g; r) g7 ^8 V7 I9 ~MATLAB实现:6 H; n3 ]& z( U5 G7 G* ^$ @- N
NSPSO:8 T! ?+ ~: }. e7 F4 T
- |& i5 }9 E- K
注意其中FSKNN是我的问题的评价函数,包含两个目标值,都存入到pfitness中
+ _" j  }, D, G# e0 O. F2 U6 i% H
  • function [solution,time,pop,pfitness,site,LeaderAVE] = NSPSO(train_F,train_L)
  • tic
  • global maxFES
  • dim = size(train_F,2);
  • FES = 1;
  • sizep = 30;
  • pop = rand(sizep,dim);
  • popv = rand(sizep,dim);
  • pfitness = zeros(sizep,2);
  • LeaderAVE = zeros(1,2);
  • while FES <maxFES
  •     Off_P = zeros(sizep,dim);
  •     Off_V = zeros(sizep,dim);
  •     ofitness = zeros(sizep,2);
  •     for i=1:sizep
  •         [pfitness(i,1),pfitness(i,2)] = FSKNN(pop(i,:),i,train_F,train_L);
  •     end
  •     Front = NDSort(pfitness(:,1:2),sizep);
  •     [~,rank] = sortrows([Front',-CrowdingDistance(pfitness,Front)']);
  •     LeaderSet = rank(1:10);
  •     solution = pfitness(LeaderSet,:);
  •     LeaderAVE(1) = mean(solution(:,1));
  •     LeaderAVE(2) = mean(solution(:,2));
  •     for i = 1:sizep
  •         good = LeaderSet(randperm(length(LeaderSet),1));
  •         r1 = rand(1,dim);
  •         r2 = rand(1,dim);
  •         Off_V(i,:) = r1.*popv(i,:) +  r2.*(pop(good,:)-pop(i,:));
  •         Off_P(i,:) = pop(i,:) + Off_V(i,:);
  •     end
  •     for i=1:sizep
  •             [ofitness(i,1),ofitness(i,2)] = FSKNN(Off_P(i,:),i,train_F,train_L);
  •     end
  •     temppop = [pop;Off_P];
  •     tempv = [popv;Off_V];
  •     tempfiness = [pfitness;ofitness];
  •     [FrontNO,MaxFNO] = NDSort(tempfiness(:,1:2),sizep);
  •     Next = false(1,length(FrontNO));
  •     Next(FrontNO<MaxFNO) = true;
  •     PopObj = tempfiness;
  •     fmax   = max(PopObj(FrontNO==1,:),[],1);
  •     fmin   = min(PopObj(FrontNO==1,:),[],1);
  •     PopObj = (PopObj-repmat(fmin,size(PopObj,1),1))./repmat(fmax-fmin,size(PopObj,1),1);
  •     % Select the solutions in the last front
  •     Last = find(FrontNO==MaxFNO);
  •     del  = Truncation(PopObj(Last,:),length(Last)-sizep+sum(Next));
  •     Next(Last(~del)) = true;
  •     % Population for next generation
  •     pop = temppop(Next,:);
  •     popv = tempv(Next,:);
  •     pfitness = tempfiness(Next,:);
  •     fprintf('GEN: %2d   Error: %.4f  F:%.2f\n',FES,LeaderAVE(1),LeaderAVE(2));
  •     FES = FES + 1;
  • end
  • [FrontNO,~] = NDSort(pfitness(:,1:2),sizep);
  • site = find(FrontNO==1);
  • solution = pfitness(site,:);
  • LeaderAVE(1) = mean(solution(:,1));
  • LeaderAVE(2) = mean(solution(:,2));
  • toc
  • time = toc;
  • end
    8 r4 D& P2 E* M0 ?! b2 v

/ o& k5 |4 c1 {6 l9 {2 i% a6 D7 l7 A% n! e+ {4 O# e+ R0 L
拥挤距离代码:
! A8 \% |/ h' M2 t+ t! B/ G7 I
2 f+ P* S& p9 M8 ~( A
  • function CrowdDis = CrowdingDistance(PopObj,FrontNO)
  • % Calculate the crowding distance of each solution front by front
  • % Copyright 2015-2016 Ye Tian
  •     [N,M]    = size(PopObj);
  •     CrowdDis = zeros(1,N);
  •     Fronts   = setdiff(unique(FrontNO),inf);
  •     for f = 1 : length(Fronts)
  •         Front = find(FrontNO==Fronts(f));
  •         Fmax  = max(PopObj(Front,:),[],1);
  •         Fmin  = min(PopObj(Front,:),[],1);
  •         for i = 1 : M
  •             [~,Rank] = sortrows(PopObj(Front,i));
  •             CrowdDis(Front(Rank(1)))   = inf;
  •             CrowdDis(Front(Rank(end))) = inf;
  •             for j = 2 : length(Front)-1
  •                 CrowdDis(Front(Rank(j))) = CrowdDis(Front(Rank(j)))+(PopObj(Front(Rank(j+1)),i)-PopObj(Front(Rank(j-1)),i))/(Fmax(i)-Fmin(i));
  •             end
  •         end
  •     end
  • end$ }# W# b5 B) i, x) q

; O8 T$ Y& h: d' ^7 ?* B0 G' O8 C8 Z2 ~
    Truncation.m代码:; i9 t5 U0 t/ V
/ w& D9 B$ v- q! a5 n5 A, X
  • function Del = Truncation(PopObj,K)
  • % Select part of the solutions by truncation
  •     N = size(PopObj,1);
  •     %% Truncation
  •     Distance = pdist2(PopObj,PopObj);
  •     Distance(logical(eye(length(Distance)))) = inf;
  •     Del = false(1,N);
  •     while sum(Del) < K
  •         Remain   = find(~Del);
  •         Temp     = sort(Distance(Remain,Remain),2);
  •         [~,Rank] = sortrows(Temp);
  •         Del(Remain(Rank(1))) = true;
  •     end
  • end
    / ?% Z4 d; Y, |; ]) y% g( i

: v! t" q- O8 k/ V0 N
6 p8 S8 L8 Y8 i4 L  ( K$ m' i! n' Y0 _* t0 c

该用户从未签到

2#
发表于 2020-11-12 14:19 | 只看该作者
基于非支配排序的多目标PSO算法MATLAB实现
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-10-7 07:46 , Processed in 0.140625 second(s), 26 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表