TA的每日心情 | 怒 2019-11-20 15:22 |
|---|
签到天数: 2 天 [LV.1]初来乍到
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
$ l# k5 s5 ]+ Y5 y; h% H1 F p. N(1)序列前向选择( SFS , Sequential Forward Selection )+ I# _- G3 P8 m* j& ]
3 F; w2 B8 c; D( U; u
算法描述:特征子集X从空集开始,每次选择一个特征x加入特征子集X,使得特征函数J( X)最优。简单说就是,每次都选择一个使得评价函数的取值达到最优的特征加入,其实就是一种简单的贪心算法。3 V0 ~ q& O: o7 Z$ b6 g" |
4 g' p+ o' S0 _ Q
1 _! g" x: u2 t9 `5 G
6 W8 q: A% B4 j$ n- o0 @0 D9 r2 }, P8 Q
& N0 m' ^/ U* W, B5 r* l/ _ r2 z- M* D
算法评价:缺点是只能加入特征而不能去除特征。例如:特征A完全依赖于特征B与C,可以认为如果加入了特征B与C则A就是多余的。假设序列前向选择算法首先将A加入特征集,然后又将B与C加入,那么特征子集中就包含了多余的特征A。
' W% T m/ r7 g# E, G/ K9 f" ]$ ?2 ]2 _- ]& W8 x) T
代码:
4 n6 e5 J6 H9 c6 G
0 S0 x( M/ U2 q: O- %----4.17编 顺序前进法特征选择 成功!
- 3 P, G$ |/ X' ?6 j9 p: W9 u
- clear;
- clc;
- %--------特征导入 请自行修改
. }" w- y5 {0 L5 L- M=512;N=512;
- load coouRFeature16_0521_Aerial1 %%%共生矩阵 96.14%
- wfeature{1}=coourfeature(:,1);
- wfeature{2}=coourfeature(:,2);
- wfeature{3}=coourfeature(:,3);
- load fufeature_0521_SARAerial1_512%%复小波 98.26%
- for i=1:13
- wfeature{3+i}=wavefeature(:,i);
- end
- load wavefeature_0521_SARAerial1_512%%%非下采样小波 97.58%
- for i=1:7
- wfeature{16+i}=wavefeature(:,i);
- end
- load wavefeature_0521_Aerial1%%小波 97.65%
- for i=1:7
- wfeature{23+i}=wavefeature(:,i);
- end
- % load rwt_cofeature96_0423_lsy1
2 ^. s" O y k2 n# z* M- % for i=1:96
- , o7 H# C, u& b; V j
- % wfeature{30+i}=feature(:,i);
- + @, {, O* Y; s f8 T0 c6 v
- % end
- 8 [% }7 t1 @ ^! T+ `3 R
- %%%%%%%----------归一化
2 c6 C3 f, J- W: D- [m n]=size(wfeature{1});
- for j=1:30%一共30组特征 这里 请自行修改
- mx=max(wfeature{j});
- mi=min(wfeature{j});
- mxx=(mx-mi);
- mii=ones([m n])*mi;
- wfeature{j}=(wfeature{j}-mii)./mxx;
- end
- %%---------------SFS 先选4个特征尝试
W" ]8 Z$ {* l) @9 X8 g- chosen=[];%%表示已选的特征
- chosen=[chosen 1];
- Jc=0;%%选出的J值
- for j=1:5 %选5个特征
- J=zeros([1 30]);
- for i=2:30 %一共30组特征 这里 请自行修改
- [mm nn]=size(chosen);
- for p=1:nn
- if i==chosen(p)
- J(i)=0;
- break;
- else
- J(i)=J(i)-sum(sum((wfeature{i}-wfeature{chosen(p)}).^2));
- end
- end
- end
- mi=min(J);
- for i=1:30
- if J(i)==0
- J(i)=mi;
- end
- end
- ma=max(J);
- for i=1:30
- if J(i)==ma
- chosen=[chosen i];
- break;
- end
- end
- end
- save Aerial1_6t_chosen chosen
- [mm nn]=size(chosen);
- tezh=[];
- for i=1:nn
- tezh=[tezh wfeature{chosen(i)}];
- end
- %%%%%%%%聚类
- 2 R4 I1 b G: m
- [IDC,U]=kmeans(tezh,2);
- cc(IDC==1,1)=0;
- cc(IDC==2,1)=0.75;
- . n& C- Z0 R1 V
- g=reshape(cc,M,N);
- figure,imshow(g);" L; Y" V% y3 _
% i t. @ O5 D
) h4 K' d: \: L: [8 Y& m(2)序列后向选择( SBS , Sequential Backward Selection )
$ S( M2 c* ]1 D' h2 g8 `4 X: }. Q) b6 B8 H
算法描述:从特征全集O开始,每次从特征集O中剔除一个特征x,使得剔除特征x后评价函数值达到最优。
}. B ~, u4 z& o2 K" ^
5 w4 N, t- `/ g! X( F4 q1 E算法评价:序列后向选择与序列前向选择正好相反,它的缺点是特征只能去除不能加入。# m C4 w' Y2 Y$ C+ ^4 P' ~
8 x9 j0 ~) y7 i& C% M
0 i f9 P7 v% m9 f: M6 \
. y0 H P ^/ Z' O6 Z) w0 W! r代码: [2 e* i" x8 g
" Z6 ~/ r- d+ _0 y) X/ c5 E: V
- %----4.17编 顺序后退法特征选择
- ' d8 G/ l+ H6 `% f' R
- clear;
- clc;
- %--------特征导入 请自行修改
7 g) }3 Q( C6 _$ p6 c* ]+ L+ A- A=imread('lsy1.gif');
- [M N]=size(A);
- load coourfeature_0414_lsy1 %%%共生矩阵 96.14%
- feature{1}=coourfeature(:,1);
- feature{2}=coourfeature(:,2);
- feature{3}=coourfeature(:,3);
- load fuwavefeature_0413_lsy1 %%复小波 98.26%
- for i=1:13
- feature{3+i}=wavefeature(:,i);
- end
- load wavefeature_0413_feixia_lsy1%%%非下采样小波 97.58%
- for i=1:7
- feature{16+i}=wavefeature(:,i);
- end
- load wavefeature_0417_lsy1%%小波 97.65%
- for i=1:7
- feature{23+i}=wavefeature(:,i);
- end
- %%%%%%%----------归一化-归一化
- ; A* F* V: k; r/ c5 P. C9 m
- [m n]=size(feature{1});
- for j=1:30%一共30组特征 这里 请自行修改
- mx=max(feature{j});
- mi=min(feature{j});
- mxx=(mx-mi);
- mii=ones([m n])*mi;
- feature{j}=(feature{j}-mii)./mxx;
- end
- %%---------------SBS
j) |, l( u/ F- chosen=[];dele=[];
- for i=1:30
- chosen=[chosen i];
- end
- 9 K# `2 x6 K+ O! P1 a5 a1 z8 D
- for j=1:24 %%删10个,留20个
- J=zeros([1 30]);ii=0; %J(1)是删1的结果,J(2)是删除2 的结果......
- for i=1:30 %???dele 是必要的么???????????????????????%一共30组特征 这里 请自行修改
- [mm nn]=size(chosen);
- for p=1:nn
- if sum(i==dele)~=0
- J(i)=0;
- break;
- else
- for q=1:nn
- if (chosen(q)~=i) & (chosen(p)~=i)
- J(i)=J(i)-sum(sum((feature{chosen(q)}-feature{chosen(p)}).^2));
- end
- end
- end
- end
- end
- mi=min(J);
- for cc=1:30
- if J(cc)==0
- J(cc)=mi;
- end
- end
- [ma we]=max(J);
- dele=[dele we];
- for dd=1:nn
- if chosen(dd)==we
- chosen(dd)=[];
- end
- end
- % chosen=[2 4 5 6 7 8 9 11 12 13 14 19 20 22 23 26 27 28 29 30];
- 0 N) a/ b+ C, p. R9 p* B
- [mm nn]=size(chosen);
- tezh=[];
- for i=1:nn
- tezh=[tezh feature{chosen(i)}];
- end
- %%%%%%%%聚类
* G2 @! S5 F( d( @: l# v- [IDC,U]=kmeans(tezh,2);
- cc(IDC==1,1)=0;
- cc(IDC==2,1)=0.75;
- g=reshape(cc,M,N);
- figure,imshow(g);
- %%%%%%%%%%%%计算正确率
0 Z) s) X6 S8 W4 e* G- ju=ones(M)*0.75;
- for i=1:M
- for j=1:M/2
- ju(i,j)=0;
- end
- end
- ju2=g-ju;
- prob=prod(size(find(ju2~=0)))/(m*n)
- 1-prob
: ?+ i6 @: I' k0 @$ T! \ # Y' _% ]; F( E$ g2 C
; @3 M+ n3 h6 Y9 E
另外,SFS与SBS都属于贪心算法,容易陷入局部最优值。 |
|