TA的每日心情 | 怒 2019-11-20 15:22 |
---|
签到天数: 2 天 [LV.1]初来乍到
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
I9 ]( O0 E/ D$ T8 D4 f(1)序列前向选择( SFS , Sequential Forward Selection )4 u+ ^. U/ {1 d5 ^- {
3 k/ W% P9 X7 u算法描述:特征子集X从空集开始,每次选择一个特征x加入特征子集X,使得特征函数J( X)最优。简单说就是,每次都选择一个使得评价函数的取值达到最优的特征加入,其实就是一种简单的贪心算法。- s) s B4 m2 I; F% I
0 T. M5 D5 R; L- v
4 ^ @ B3 X5 s' n- @' P8 P
3 W0 L% [3 e I
5 k% x3 X6 j% [9 }" ]
: B) e1 [1 H- B/ R8 ]* R" M; T算法评价:缺点是只能加入特征而不能去除特征。例如:特征A完全依赖于特征B与C,可以认为如果加入了特征B与C则A就是多余的。假设序列前向选择算法首先将A加入特征集,然后又将B与C加入,那么特征子集中就包含了多余的特征A。
1 j) n: g6 K' U4 N- O7 w+ t5 ^5 O) q
代码:9 O5 N8 r0 i* m' {* f9 E. Y
! n# r% b, \5 Z+ u6 l. ~- %----4.17编 顺序前进法特征选择 成功!
- % j; ^. a" S4 ^* o" q- k
- clear;
- clc;
- %--------特征导入 请自行修改
- h- ?: Z$ S3 V; D. F% p
- M=512;N=512;
- load coouRFeature16_0521_Aerial1 %%%共生矩阵 96.14%
- wfeature{1}=coourfeature(:,1);
- wfeature{2}=coourfeature(:,2);
- wfeature{3}=coourfeature(:,3);
- load fufeature_0521_SARAerial1_512%%复小波 98.26%
- for i=1:13
- wfeature{3+i}=wavefeature(:,i);
- end
- load wavefeature_0521_SARAerial1_512%%%非下采样小波 97.58%
- for i=1:7
- wfeature{16+i}=wavefeature(:,i);
- end
- load wavefeature_0521_Aerial1%%小波 97.65%
- for i=1:7
- wfeature{23+i}=wavefeature(:,i);
- end
- % load rwt_cofeature96_0423_lsy1
# `' [. P% W, P3 ^- % for i=1:96
1 [1 T- n$ R. B8 Z3 R/ _- % wfeature{30+i}=feature(:,i);
- : p" o1 ~: g2 G X- p
- % end
- 5 [' K( n- g0 Q" m; H7 O
- %%%%%%%----------归一化
- t* j, ~7 d" }$ J) l% q
- [m n]=size(wfeature{1});
- for j=1:30%一共30组特征 这里 请自行修改
- mx=max(wfeature{j});
- mi=min(wfeature{j});
- mxx=(mx-mi);
- mii=ones([m n])*mi;
- wfeature{j}=(wfeature{j}-mii)./mxx;
- end
- %%---------------SFS 先选4个特征尝试
- * {* B3 o4 s- A1 c& ~1 v& \+ o
- chosen=[];%%表示已选的特征
- chosen=[chosen 1];
- Jc=0;%%选出的J值
- for j=1:5 %选5个特征
- J=zeros([1 30]);
- for i=2:30 %一共30组特征 这里 请自行修改
- [mm nn]=size(chosen);
- for p=1:nn
- if i==chosen(p)
- J(i)=0;
- break;
- else
- J(i)=J(i)-sum(sum((wfeature{i}-wfeature{chosen(p)}).^2));
- end
- end
- end
- mi=min(J);
- for i=1:30
- if J(i)==0
- J(i)=mi;
- end
- end
- ma=max(J);
- for i=1:30
- if J(i)==ma
- chosen=[chosen i];
- break;
- end
- end
- end
- save Aerial1_6t_chosen chosen
- [mm nn]=size(chosen);
- tezh=[];
- for i=1:nn
- tezh=[tezh wfeature{chosen(i)}];
- end
- %%%%%%%%聚类
- P, S# n. \% r+ _0 w* b
- [IDC,U]=kmeans(tezh,2);
- cc(IDC==1,1)=0;
- cc(IDC==2,1)=0.75;
- 3 I, x& V9 c5 r" D" D1 x/ [
- g=reshape(cc,M,N);
- figure,imshow(g);/ r( Y- ^" b! q& Y/ K/ ], x! g8 U
) n: |) ~: y" Y( t( R1 W7 }1 \% U- R0 U
(2)序列后向选择( SBS , Sequential Backward Selection ): \( n, _& x I0 X9 O, w' E
$ d( b2 A9 j% ?算法描述:从特征全集O开始,每次从特征集O中剔除一个特征x,使得剔除特征x后评价函数值达到最优。
6 t* W% n9 ]3 F
5 E3 q; R( K8 N, m, ^! b算法评价:序列后向选择与序列前向选择正好相反,它的缺点是特征只能去除不能加入。! \- j! V+ f# Z M6 d+ x
/ Q9 o) `2 `6 W' I! L, m1 Z
b/ O; s% w4 y8 d1 s7 O" d
( ?, Q; ~; h' M5 n' R$ p7 }代码:
& b' V7 s u9 W1 o0 L5 n8 D5 h
4 a& \& `/ j, X" K" D- %----4.17编 顺序后退法特征选择
- % x& H5 `! b1 D" g3 j, ?
- clear;
- clc;
- %--------特征导入 请自行修改
- k8 r8 s: n. }/ B% E) Y: V- A=imread('lsy1.gif');
- [M N]=size(A);
- load coourfeature_0414_lsy1 %%%共生矩阵 96.14%
- feature{1}=coourfeature(:,1);
- feature{2}=coourfeature(:,2);
- feature{3}=coourfeature(:,3);
- load fuwavefeature_0413_lsy1 %%复小波 98.26%
- for i=1:13
- feature{3+i}=wavefeature(:,i);
- end
- load wavefeature_0413_feixia_lsy1%%%非下采样小波 97.58%
- for i=1:7
- feature{16+i}=wavefeature(:,i);
- end
- load wavefeature_0417_lsy1%%小波 97.65%
- for i=1:7
- feature{23+i}=wavefeature(:,i);
- end
- %%%%%%%----------归一化-归一化
, t( A5 u5 ?! Y( y- [m n]=size(feature{1});
- for j=1:30%一共30组特征 这里 请自行修改
- mx=max(feature{j});
- mi=min(feature{j});
- mxx=(mx-mi);
- mii=ones([m n])*mi;
- feature{j}=(feature{j}-mii)./mxx;
- end
- %%---------------SBS
- ; g* a. c/ q5 G0 j J# z9 @2 R
- chosen=[];dele=[];
- for i=1:30
- chosen=[chosen i];
- end
- - Y6 ^2 d5 C$ N2 `# v; ~- x
- for j=1:24 %%删10个,留20个
- J=zeros([1 30]);ii=0; %J(1)是删1的结果,J(2)是删除2 的结果......
- for i=1:30 %???dele 是必要的么???????????????????????%一共30组特征 这里 请自行修改
- [mm nn]=size(chosen);
- for p=1:nn
- if sum(i==dele)~=0
- J(i)=0;
- break;
- else
- for q=1:nn
- if (chosen(q)~=i) & (chosen(p)~=i)
- J(i)=J(i)-sum(sum((feature{chosen(q)}-feature{chosen(p)}).^2));
- end
- end
- end
- end
- end
- mi=min(J);
- for cc=1:30
- if J(cc)==0
- J(cc)=mi;
- end
- end
- [ma we]=max(J);
- dele=[dele we];
- for dd=1:nn
- if chosen(dd)==we
- chosen(dd)=[];
- end
- end
- % chosen=[2 4 5 6 7 8 9 11 12 13 14 19 20 22 23 26 27 28 29 30];
- : N" o; a4 Y- ~
- [mm nn]=size(chosen);
- tezh=[];
- for i=1:nn
- tezh=[tezh feature{chosen(i)}];
- end
- %%%%%%%%聚类
- - z7 ~; W2 Z6 }2 L2 o
- [IDC,U]=kmeans(tezh,2);
- cc(IDC==1,1)=0;
- cc(IDC==2,1)=0.75;
- g=reshape(cc,M,N);
- figure,imshow(g);
- %%%%%%%%%%%%计算正确率
- : s$ z; u4 l; C8 h! Y+ `
- ju=ones(M)*0.75;
- for i=1:M
- for j=1:M/2
- ju(i,j)=0;
- end
- end
- ju2=g-ju;
- prob=prod(size(find(ju2~=0)))/(m*n)
- 1-prob
9 m M. Y* t7 U+ q
3 L) {: H: v- k: l& t! E
2 ^: i9 k; f7 V0 {: l, |另外,SFS与SBS都属于贪心算法,容易陷入局部最优值。 |
|