|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
最大信息系数 maximal information coefficient (MIC),又称最大互信息系数。* E; n( C: Y' [8 j) a. b6 T: F
2 a0 _; w% C1 }/ k( _' l; @
特征选择步骤+ }6 c' c; P: P& |. w! R9 ^
9 i5 ]2 C9 y3 u①计算不同维度(特征)之间的MIC值,MIC值越大,说明这两个维度越接近。
2 I# o* a5 }" a②寻找那些与其他维度MIC值较小的维度,根据阈值选出这些特征。+ ]7 Y1 L+ [" ]% V
③利用SVM训练
$ N/ t6 d8 I1 Q3 {. t" n- W④训练结果在测试集上判断错误率* a8 P, I" m; f9 a8 f! k. k; k. [# v
' l) R6 O- j8 e, ^+ @MATLAB代码:: @3 U, C( W* d+ \
9 t! s8 B: T' ]) O* \
- clc
- load train_F.mat;
- load train_L.mat;
- load test_F.mat;
- load test_L.mat;
- Dim = 22;
- MIC_matrix = zeros(Dim, Dim);
- for i = 1:Dim
- for j = 1:Dim
- X_v = reshape(train_F(:,i),1,size(train_F(:,i),1));
- Y_v = reshape(train_F(:,j),1,size(train_F(:,j),1));
- [A, ~] = mine(X_v, Y_v);
- MIC_matrix(i, j) = A.mic;
- end
- end
- MIC_matrix(MIC_matrix>0.4) = 0;
- MIC_matrix(MIC_matrix~=0) = 1;
- inmodel = sum(MIC_matrix);
- threshold = sum(inmodel)/Dim;
- inmodel(inmodel <= threshold) = 0;
- inmodel(inmodel > threshold) = 1;
- model = libsvmtrain(train_L,train_F(:,inmodel));
- [predict_label, ~, ~] = libsvmpredict(test_L,test_F(:,inmodel),model);
- error=0;
- for j=1:length(test_L)
- if(predict_label(j,1) ~= test_L(j,1))
- error = error+1;
- end
- end
- error = error/length(test_L);& t5 l) X' w0 E1 I5 @
|
|