|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
最大信息系数 maximal information coefficient (MIC),又称最大互信息系数。" ~& O! q8 b* c* R$ h. e! w
4 h: `) \; J8 B- _4 ]
特征选择步骤! B. b& c5 n/ U4 V. m% h0 P
! Y7 e4 z8 `$ e/ C% p
①计算不同维度(特征)之间的MIC值,MIC值越大,说明这两个维度越接近。# D J" d$ n% ]* k6 N
②寻找那些与其他维度MIC值较小的维度,根据阈值选出这些特征。, s6 E: n; p5 C8 \
③利用SVM训练7 k1 F. h: e. h/ H+ ~: l# ]) M
④训练结果在测试集上判断错误率
7 Z( s- j( L- y+ m- V* W+ v
/ D0 H6 s- C9 g% s& vMATLAB代码:6 p& x% B: R3 S0 [; D8 I
( x' c. }! a) c, [- Y- clc
- load train_F.mat;
- load train_L.mat;
- load test_F.mat;
- load test_L.mat;
- Dim = 22;
- MIC_matrix = zeros(Dim, Dim);
- for i = 1:Dim
- for j = 1:Dim
- X_v = reshape(train_F(:,i),1,size(train_F(:,i),1));
- Y_v = reshape(train_F(:,j),1,size(train_F(:,j),1));
- [A, ~] = mine(X_v, Y_v);
- MIC_matrix(i, j) = A.mic;
- end
- end
- MIC_matrix(MIC_matrix>0.4) = 0;
- MIC_matrix(MIC_matrix~=0) = 1;
- inmodel = sum(MIC_matrix);
- threshold = sum(inmodel)/Dim;
- inmodel(inmodel <= threshold) = 0;
- inmodel(inmodel > threshold) = 1;
- model = libsvmtrain(train_L,train_F(:,inmodel));
- [predict_label, ~, ~] = libsvmpredict(test_L,test_F(:,inmodel),model);
- error=0;
- for j=1:length(test_L)
- if(predict_label(j,1) ~= test_L(j,1))
- error = error+1;
- end
- end
- error = error/length(test_L);0 Y# {. T1 T D. u7 S3 M
|
|