找回密码
 注册
关于网站域名变更的通知
查看: 281|回复: 1
打印 上一主题 下一主题

随机固定分组合作协同进化NSGA2算法

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2020-10-16 14:43 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x

  A  t3 ]4 A, ^# j6 f合作协同进化(Cooperative Coevolution)是求解大规模优化算法一个有效的方法。将大规模问题分解为一组组较小的子问题。而合作协同进化的关键是分解策略。8 x9 }# c, o7 }+ L8 g" N, y( W

8 k) y; @* ~( a5 n/ E% VNSGA2算法是一种多目标遗传算法。此文章是随机固定分组的合作协同进化利用NSGA2来优化。6 S( M: a4 e5 S1 W8 Z9 k

7 Q- V. m5 L6 V+ Q7 s比如有12个决策变量,我们固定随机优化3个决策变量,那么就将决策变量分成了4组。
( i2 f0 ]7 O; b+ y7 R$ R: T3 g( F, h* c; d9 K
MATLAB主函数代码:
! Z  @2 L: w" w: G
1 Q; S$ i8 ^5 m: e8 B
  • %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  • clc;
  • clear;
  • global pop
  • pop = 500; %种群数量
  • gen = 2; %迭代次数
  • global M
  • M = 2; %目标数量
  • Dim=22;             %搜索空间维数(未知数个数)
  • sub_dim= 2 ;
  • global min_range
  • global max_range
  • min_range = zeros(1, Dim); %下界
  • max_range = ones(1,Dim); %上界
  • %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  • divide_datasets();
  • global answer
  • answer=cell(M,3);
  • Dim_index = ones(1,1)*(1:Dim+4);
  • %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  • chromosome = initialize_variables(pop, M, Dim, min_range, max_range, Dim_index);
  • chromosome = non_domination_sort_mod(chromosome, M, Dim);
  • result = 1;
  • while gen ~= 0
  •     subgroup = rnd_divide(Dim, sub_dim);
  •     for i=1:length(subgroup)
  •         subgroup{i}(sub_dim+1)=Dim+1;
  •         subgroup{i}(sub_dim+2)=Dim+2;
  •         subgroup{i}(sub_dim+3)=Dim+3;
  •         subgroup{i}(sub_dim+4)=Dim+4;
  •         [temp_chromosome] = nsga2(chromosome(:,subgroup{i}), sub_dim, subgroup{i});
  •         chromosome(:,subgroup{i}(1:sub_dim)) = temp_chromosome(:,1:sub_dim);
  •     end
  •     chromosome = nsga2(chromosome, Dim, Dim_index);
  •     chromosome = non_domination_sort_mod(chromosome, M, Dim);
  •     gen =gen - 1;
  •     progress = 1-gen/10
  • end
  • plot(chromosome(:,Dim + 1),chromosome(:,Dim + 2),'*');
  • xlabel('f_1'); ylabel('f_2');
  • title('Pareto Optimal Front');1 k* R9 G  j  p7 a! C3 e" e, p& F
    ( `1 w$ H$ b1 B( l* F
$ d1 B& T. ^  {# z, y
随机分组代码:7 O, M; |' M; D" Z" b! g8 o

' M% t' V( v4 n8 I6 v4 d; |# g$ M% m; q
  • % random grouping
  • function group = rnd_divide(dim, subdim)
  •    dim_rand = randperm(dim);
  •    group = {};
  •    for i = 1:subdim:dim
  •       index = dim_rand(i:i+subdim-1);
  •       group = {group{1:end} index};
  •    end
  • end* `( O+ q# p& j, r
2 ?/ ^7 p1 y" N5 ?$ b

8 L, t3 \$ x' c0 P5 {
1 y& w/ y. j$ l) i0 ^
/ z% _1 v- g9 ~6 n3 V$ O3 @( C; H6 ~; ?% M/ p# h
  • TA的每日心情
    慵懒
    2020-6-13 15:46
  • 签到天数: 1 天

    [LV.1]初来乍到

    2#
    发表于 2020-10-16 15:21 | 只看该作者
    随机固定分组合作协同进化NSGA2算法
    您需要登录后才可以回帖 登录 | 注册

    本版积分规则

    关闭

    推荐内容上一条 /1 下一条

    EDA365公众号

    关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

    GMT+8, 2025-7-23 04:43 , Processed in 0.109375 second(s), 23 queries , Gzip On.

    深圳市墨知创新科技有限公司

    地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

    快速回复 返回顶部 返回列表