找回密码
 注册
关于网站域名变更的通知
查看: 437|回复: 1
打印 上一主题 下一主题

NSGA-Ⅱ算法C++实现(测试函数为ZDT1)

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2020-9-24 14:02 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
本帖最后由 pulbieup 于 2020-9-24 14:04 编辑 9 g% Z/ Z$ g" X# Z

( k# i  i' l5 w在看C++实现之前,请先看一下NSGA-II算法概述:NSGA-II多目标遗传算法概述* J; C2 Q6 L( I

. N  r/ R) \  \5 @3 U& ^- X* F
% `# P! L6 N* TNSGA-Ⅱ就是在第一代非支配排序遗传算法的基础上改进而来,其改进主要是针对如上所述的三个方面:
5 A, ]* T1 R  K  D+ }1 n: ]①提出了快速非支配排序算法,一方面降低了计算的复杂度,另一方面它将父代种群跟子代种群进行合并,使得下一代的种群从双倍的空间中进行选取,从而保留了最为优秀的所有个体;
( ?- `/ f5 w- b* v- y4 w5 o②引进精英策略,保证某些优良的种群个体在进化过程中不会被丢弃,从而提高了优化结果的精度;
' B+ [0 E  O; d( u. n$ d9 h. @③采用拥挤度和拥挤度比较算子,不但克服了NSGA中需要人为指定共享参数的缺陷,而且将其作为种群中个体间的比较标准,使得准Pareto域中的个体能均匀地扩展到整个Pareto域,保证了种群的多样性。% s. Z2 C# q  l5 M
# e( P  `! P3 Z/ C0 _
头文件:
  Q% E+ m( l' ?6 z8 @# C* I. v8 S! h8 E5 z3 e% S: v6 T/ S( E) F
  • #include<stdio.h>
  • #include<stdlib.h>
  • #include<Windows.h>
  • #include<math.h>
  • #include<time.h>
  • #include<iostream>
  • #define Dimension 2//基因维数,在这里即ZDT1问题xi的i的最大值
  • #define popsize 100//种群大小
  • #define generation 500 //繁衍代数
  • #define URAND (rand()/(RAND_MAX+1.0))//产生随机数
  • int temp1[popsize];//临时数组
  • int mark[popsize];//标记数组
  • //以上两个数组用于产生新的子代
  • using namespace std;8 ^5 Y! h3 g! }& ^! p* J5 s5 L

) X# z! F. ]5 `/ ?) o* b
  {' G; K/ c: Y, J7 B. m2 x个体的类声明:
8 J6 T5 S+ n2 R; U
6 s- N, s+ A) d$ v' O. v5 d) l3 H
  • class individual
  • {
  • public:
  •     double value[Dimension];//xi的值
  •     int sp[2*popsize];
  •     //被支配个体集合SP。该量是可行解空间中所有被个体p支配的个体组成的集合。
  •     int np;
  •     //支配个数np。该量是在可行解空间中可以支配个体p的所以个体的数量。
  •     int is_dominated;//集合sp的个数
  •     void init();//初始化个体
  •     int rank;//优先级,Pareto级别为当前最高级
  •     double crowding_distance;//拥挤距离
  •     double fvalue[2];//ZDT1问题目标函数的值
  •     void f_count();//计算fvalue的值
  • };
    % A2 ?# R8 k: c7 t; B$ S) h

, X! U( B& ~3 q! }; z! G- @* W6 r8 H2 I2 f3 u3 @
群体的类声明:4 F) m8 B6 `& R. ~/ Y- ?, K* O% ^
. H8 K0 C8 x8 z9 Z3 ]
  • class population
  • {
  • public:
  •     population();//类初始化
  •     individual P[popsize];
  •     individual Q[popsize];
  •     individual R[2*popsize];
  •     void set_p_q();
  •     //随机产生一个初始父代P,在此基础上采用二元锦标赛选择、
  •     //交叉和变异操作产生子代Q。P和Q群体规模均为popsize
  •     //将Pt和Qt并入到Rt中(初始时t=0),对Rt进行快速非支配解排序,
  •     //构造其所有不同等级的非支配解集F1、F2........
  •     int Rnum;
  •     int Pnum;
  •     int Qnum;
  •     //P,Q,R中元素的个数
  •     void make_new_pop();//产生新的子代
  •     void fast_nondominated_sort();//快速非支配排序
  •     void calu_crowding_distance(int i);//拥挤距离计算
  •     void f_sort(int i);//对拥挤距离降序排列
  •     void maincal();//主要操作
  •     int choice(int a,int b);
  •     //两个个体属于不同等级的非支配解集,优先考虑等级序号较小的
  •     //若两个个体属于同一等级的非支配解集,优先考虑拥挤距离较大的
  •     int len[2*popsize];//各个变异交叉后的群体Fi的长度的集合
  •     int len_f;//整个群体rank值
  • };) x/ {; J* i) B4 [$ t

9 E5 @- n6 E; T" x3 e: D& I! E4 _3 v
全局变量及部分函数声明:
2 w3 \8 G7 T- m2 t5 }0 G* D* H$ w& D! h/ G; k% {
  • individual F[2*popsize][2*popsize];
  • double rand_real(double low,double high)
  • //产生随机实数
  • {
  •     double h;
  •     h=(high-low)*URAND+low+0.001;
  •     if(h>=high)
  •         h=high-0.001;
  •     return h;
  • }
  • int rand_int(int low,int high)
  • //产生随机整数
  • {
  •     return int((high-low+1)*URAND)+low;
  • }
    + u8 v* Q; Z9 s! A$ c
, b6 n5 ~: t, t' o2 f- ]2 ?

+ J1 b+ Y& J( A& E4 Y+ B6 N, X% y, c. F关于排序函数qsort
' R& S: J9 A4 w$ s
' n9 y$ U. S3 k, {0 Tvoid qsort( void *base, size_t num, size_t width, int (__cdecl *compare )
" Y+ {- D' A3 z# S利用qsort对F数组按照cmp3排序
4 |, n) c+ u' Y" D# g! H7 a' Q8 W, F. ^$ v) d' U# b7 s
  • int cmp1(const void *a,const void *b)
  • //目标函数f1的升序排序
  • {
  •     const individual *e=(const individual *)a;
  •     const individual *f=(const individual *)b;
  •     if(e->fvalue[0]==f->fvalue[0])
  •         return 0;
  •     else if(e->fvalue[0]<f->fvalue[0])
  •         return -1;
  •     else return 1;
  • }
  • int cmp2(const void *a,const void *b)
  • //目标函数f2的升序排序
  • {
  •     const individual *e=(const individual *)a;
  •     const individual *f=(const individual *)b;
  •     if(e->fvalue[1]==f->fvalue[1])
  •         return 0;
  •     else if(e->fvalue[1]<f->fvalue[1])
  •         return -1;
  •     else return 1;
  • }
  • int cmp_c_d(const void *a,const void *b)
  • //对拥挤距离降序排序
  • {
  •     const individual *e=(const individual *)a;
  •     const individual *f=(const individual *)b;
  •     if(e->crowding_distance==f->crowding_distance)
  •         return 0;
  •     else if(e->crowding_distance<f->crowding_distance)
  •         return 1;
  •     else
  •         return -1;
  • }
  • void population::f_sort(int i)
  • {
  • int n;
  • n=len;
  • qsort(F,n,sizeof(individual),cmp_c_d);
  • }
    - T: |  _) D0 A0 H
9 s4 m3 G4 K5 W% O

5 N5 |" Y7 Z; U+ \) _- i! g% H群的初始化:
' }! D, i6 `7 f, p/ N3 z  a& U% X$ c6 w1 G3 N( x) S
  • population::population()
  • {
  •     int i;
  •     for(i=0;i<popsize;i++)
  •     {
  •         P.init();
  •     }
  •     for(i=0;i<popsize;i++)
  •     {
  •         P.f_count();
  •     }
  •     Pnum=popsize;
  •     Qnum=0;
  •     Rnum=0;
  • }
    - t/ c; G5 [8 Q5 s6 `% e0 f  q

. s/ B1 ~/ q- T4 o3 ~/ T0 \2 R9 x) v& p, D" {# E/ s
个体初始化:! A6 K7 i. j( [+ B9 x
+ D$ w% c$ m- k) S, P$ Z- _6 k- ^
  • void individual::init()
  • {
  •     for(int i=0;i<Dimension;i++)
  •         value=rand_real(0.0,1.0);
  • }
    ' y4 H9 R/ ^& ^5 {
5 t& C' Y& h: w6 l/ Z1 b: g

4 J: y' w& G) C. E! V  R9 Z
& J  }. S" U1 i利用二进制锦标赛产生子代:. p' a1 ~: J/ K3 b( a" W# l- x

3 k8 R& g" V" W% E+ I  M1、随机产生一个初始父代Po,在此基础上采用二元锦标赛选择、交叉和变异操作产生子代Qo, Po 和Qo群体规模均为N
) \9 m8 n0 ~5 L" {2、将Pt和Qt并入到Rt中(初始时t=0),对Rt进行快速非支配解排序,构造其所有不同等级的非支配解集F1、F2……..  x+ g2 W, p3 c2 d2 a1 D: O- G
3、按照需要计算Fi中所有个体的拥挤距离,并根据拥挤比较运算符构造Pt+1,直至Pt+1规模为N,图中的Fi为F3
( X0 e0 T* K' J- f( F
; b3 k! \) x4 ?. } , w& ~& F) L$ ?5 Y0 C
2 ?! `, u$ K! d8 C, w2 y  M
; V) L& ?/ p7 Q6 S( I% F: }
  • void population::make_new_pop()
  • {
  •     int i,j,x,y,t1,t2,t3;
  •     double s,u,b;
  •     memset(mark,0,sizeof(mark));
  •     t3=0;
  •     while(t3<popsize/2)
  •     {
  •         while(t1=t2=rand_int(0,popsize-1),mark[t1]);
  •         while(t1==t2||mark[t2])
  •         {
  •             t2=rand_int(0,popsize-1);
  •         }
  •         t1=choice(t1,t2);
  •         temp1[t3++]=t1;
  •         mark[t1]=1;
  •     }
  •     for(i=0;i<popsize;i++)
  •     {
  •         s=rand_real(0.0,1.0);
  •         if(s<=0.9)
  •         {
  •             for(j=0;j<Dimension;j++)
  •             {
  •                 u=rand_real((0.0+1e-6),(1.0-1e-6));
  •                 if(u<=0.5)
  •                     b=pow(2*u,1.0/21);
  •                 else
  •                     b=1.0/pow(2*(1-u),1.0/21);
  •                 x=y=rand_int(0,popsize/2-1);
  •                 while(x==y)
  •                     y=rand_int(0,popsize/2-1);
  •                 Q.value[j]=1.0/2*((1-b)*P[temp1[x]].value[j]+(1+b)*P[temp1[y]].value[j]);
  •                 if(Q.value[j]<0)
  •                     Q.value[j]=1e-6;
  •                 else if(Q.value[j]>1)
  •                     Q.value[j]=1.0-(1e-6);
  •                 if(i+1<popsize)
  •                 {
  •                     Q[i+1].value[j]=1.0/2*((1+b)*P[temp1[x]].value[j]+(1-b)*P[temp1[y]].value[j]);
  •                     if(Q[i+1].value[j]<=0)
  •                         Q[i+1].value[j]=1e-6;
  •                     else if(Q[i+1].value[j]>1)
  •                         Q[i+1].value[j]=(1-1e-6);
  •                 }
  •             }
  •             i++;
  •         }
  •         else
  •         {
  •             for(j=0;j<Dimension;j++)
  •             {
  •                 x=rand_int(0,popsize/2-1);
  •                 u=rand_real(0.0+(1e-6),1.0-(1e-6));
  •                 if(u<0.5)
  •                     u=pow(2*u,1.0/21)-1;
  •                 else
  •                     u=1-pow(2*(1-u),1.0/21);
  •                 Q.value[j]=P[temp1[x]].value[j]+(1.0-0.0)*u;
  •                 if(Q.value[j]<0)
  •                     Q.value[j]=1e-6;
  •                 else if(Q.value[j]>1)
  •                     Q.value[j]=1-(1e-6);
  •             }
  •         }
  •     }
  •     Qnum=popsize;
  •     for(i=0;i<popsize;i++)
  •         Q.f_count();
  • }
    ! `0 Z9 r0 E9 e4 V4 ?4 P
% u) |, Q7 f% M3 M7 D

/ e$ m! q5 F( ]7 E5 ~
  • void population::set_p_q()
  • {
  •     Rnum=0;
  •     Qnum=popsize;
  •     int i;
  •     for(i=0;i< Pnum;i++)
  •         R[Rnum++]=P;
  •     for(i=0;i<Qnum;i++)
  •         R[Rnum++]=Q;
  •     for(i=0;i<2*popsize;i++)
  •         R.f_count();
  • }1 k3 X8 F. ]" X- `" S7 X
' V1 }4 r. T+ I* y
& C8 z* Y2 R" N1 ]4 |
ZDT1问题函数值的计算:: P! m* s- H5 S$ i
5 }+ X$ f9 _4 W. i( j
* d$ y% C+ _  g: R) [

( e1 F1 C8 S5 r* y* l
  • void individual::f_count()
  • {
  •     fvalue[0]=value[0];
  •     int i;
  •     double g=1,sum=0;
  •     for(i=1;i<Dimension;i++)
  •     {
  •         sum+=value;
  •     }
  •     sum+=9*(sum/(Dimension-1));
  •     g+=sum;
  •     fvalue[1]=g*(1-sqrt(value[0]/g));
  • }
    " R  w# h1 t6 \' j8 T- }( c

) A8 |; r, j* p6 `( e8 L4 n) ~9 ^( W+ j# \
判断目标函数值是否被支配:
% a/ r: x' a3 L. Z' x4 i
; F, V/ A3 N3 X
  • bool e_is_dominated(const individual &a,const individual &b)
  • {
  •     if((a.fvalue[0]<=b.fvalue[0])&&(a.fvalue[1]<=b.fvalue[1]))
  •     {
  •         if((a.fvalue[0]==b.fvalue[0])&&a.fvalue[1]==b.fvalue[1])
  •             return false;
  •         else
  •             return true;
  •     }
  •     else
  •         return false;
  • }/ q& O7 x* j) Z+ `) I1 J1 s
; L# `% n3 Q9 x% A, `& f6 G* T+ x

3 h" D- D9 U1 G- g. M$ T9 Y2 E快速非支配排序法:重点!!!  `  [% ^! I  D: l
9 m3 Y( y9 s! i+ l3 o
  • void population::fast_nondominated_sort()
  • {
  •     int i,j,k;
  •     individual H[2*popsize];
  •     int h_len=0;
  •     for(i=0;i<2*popsize;i++)
  •     {
  •         R.np=0;
  •         R.is_dominated=0;
  •         len=0;
  •     }
  •     for(i=0;i<2*popsize;i++)
  •     {
  •         for(j=0;j<2*popsize;j++)
  •         {
  •             if(i!=j)
  •             {
  •                 if(e_is_dominated(R,R[j]))
  •                     R.sp[R.is_dominated++]=j;
  •                 else if(e_is_dominated(R[j],R))
  •                     R.np+=1;
  •             }
  •         }
  •         if(R.np==0)
  •         {
  •             len_f=1;
  •             F[0][len[0]++]=R;
  •         }
  •     }
  •     i=0;
  •     while(len!=0)
  •     {
  •         h_len=0;
  •         for(j=0;j<len;j++)
  •         {
  •             for(k=0;k<F[j].is_dominated;k++)
  •             {
  •                 R[F[j].sp[k]].np--;
  •                 if(R[F[j].sp[k]].np==0)
  •                 {
  •                     H[h_len++]=R[F[j].sp[k]];
  •                     R[F[j].sp[k]].rank=i+2;
  •                 }
  •             }
  •         }
  •         i++;
  •         len=h_len;
  •         if(h_len!=0)
  •         {
  •             len_f++;
  •             for(j=0;j<len;j++)
  •                 F[j]=H[j];
  •         }
  •     }
  • }5 e, h. g. y+ }, C7 a1 Y6 e1 u

8 f8 A9 P. p8 w6 C7 A# `; t+ N. z
6 }# y+ T6 A- C/ w# \, Z4 H( l$ u+ M6 I9 S' y, @7 u
计算拥挤距离:重点!!!具体解释见其他文章!!!
/ w6 e( `7 s0 X6 M5 M  s( M. h/ t( M
: a2 r0 X# K4 Z
0 [/ W2 x& t8 j' k/ `. l$ t3 B8 [% U. M
; o+ L' X- z  o# _6 ?
  • void population::calu_crowding_distance(int i)
  • {
  •     int n=len;
  •     double m_max,m_min;
  •     int j;
  •     for(j=0;j<n;j++)
  •         F[j].crowding_distance=0;
  •     F[0].crowding_distance=F[n-1].crowding_distance=0xffffff;
  •     qsort(F,n,sizeof(individual),cmp1);
  •     m_max=-0xfffff;
  •     m_min=0xfffff;
  •     for(j=0;j<n;j++)
  •     {
  •         if(m_max<F[j].fvalue[0])
  •             m_max=F[j].fvalue[0];
  •         if(m_min>F[j].fvalue[0])
  •             m_min=F[j].fvalue[0];
  •     }
  •     for(j=1;j<n-1;j++)
  •         F[j].crowding_distance+=(F[j+1].fvalue[0]-F[j-1].fvalue[0])/(m_max-m_min);
  •     F[0].crowding_distance=F[n-1].crowding_distance=0xffffff;
  •     qsort(F,n,sizeof(individual),cmp2);
  •     m_max=-0xfffff;
  •     m_min=0xfffff;
  •     for(j=0;j<n;j++)
  •     {
  •         if(m_max<F[j].fvalue[1])
  •             m_max=F[j].fvalue[1];
  •         if(m_min>F[j].fvalue[1])
  •             m_min=F[j].fvalue[1];
  •     }
  •     for(j=1;j<n-1;j++)
  •         F[j].crowding_distance+=(F[j+1].fvalue[1]-F[j-1].fvalue[1])/(m_max-m_min);
  • }
    6 x$ Q" A( l' q) _
' V5 l7 o' m' V/ q% @1 v7 Y

' ^& ]9 Z# g2 }采集多样性的选择:( h- T9 l% w5 j2 R* r  M
& E! R5 G8 K& D& `0 y& K: X) s
  • int population::choice(int a,int b)
  • {
  •     if(P[a].rank<  P .rank)
  •         return a;
  •     else if(P[a].rank==P.rank)
  •     {
  •         if(P[a].crowding_distance>  P  .crowding_distance)
  •             return a;
  •         else
  •             return b;
  •     }
  •     else
  •         return b;
  • }
    6 G! ]. q- i+ H9 A$ t0 o

& S4 `) e; v* }, W, l$ b: ~) d3 x- J( M5 m- O
4 Q/ g/ d7 K2 A
主要操作函数:4 g( F, {  _) ^3 `' ~2 a. E
  q- e0 i% ~, K- u- V# B% X3 s8 o/ q
  • void population::maincal()
  • {
  •     int s,i,j;
  •     s=generation;
  •     make_new_pop();
  •     while(s--)
  •     {
  •         printf("The %d generation\n",s);
  •         set_p_q();
  •         fast_nondominated_sort();
  •         Pnum=0;
  •         i=0;
  •         while(Pnum+len<=popsize)
  •         {
  •             calu_crowding_distance(i);
  •             for(j=0;j<len;j++)
  •                 P[Pnum++]=F[j];
  •             i++;
  •             if(i>=len_f)break;
  •         }
  •         if(i<len_f)
  •         {
  •             calu_crowding_distance(i);
  •             f_sort(i);
  •         }
  •         for(j=0;j<popsize-Pnum;j++)
  •             P[Pnum++]=F[j];
  •         make_new_pop();
  •     }
  • }
    $ X! d+ ~- L; y% Z

; t2 ^$ u4 T2 b6 C5 ?$ ]0 u7 N  \
主函数:
; C4 y% w$ S! @7 \: U$ d; H
0 y  c2 }" F1 Q' f
  • int main()
  • {
  •     FILE *p;
  •     p=fopen("d:\\My_NSGA2.txt","w+");
  •     srand((unsigned int)(time(0)));
  •     population pop;
  •     pop.maincal();
  •     int i,j;
  •     fprintf(p,"XuYi All Rights Reserved.\nWelcome to OmegaXYZ: www.omegaxyz.com\n");
  •     fprintf(p,"Problem ZDT1\n");
  •     fprintf(p,"\n");
  •     for(i=0;i<popsize;i++)
  •     {
  •         fprintf(p,"The %d generation situation:\n",i);
  •         for(j=1;j<=Dimension;j++)
  •         {
  •             fprintf(p,"x%d=%e  ",j,pop.P.value[j]);
  •         }
  •         fprintf(p,"\n");
  •         fprintf(p,"f1(x)=%f   f2(x)=%f\n",pop.P.fvalue[0],pop.P.fvalue[1]);
  •     }
  •     fclose(p);
  •     return 1;
  • }& J9 S( `. }* Y2 U. Q1 A& \4 k% Z
6 U; l3 ?- Q1 q# ]) s6 {# [8 T

+ n$ j7 f( m  E( Q6 n. n( E- W2 O; C6 W
ZDT1问题图像及前沿面。
& Y3 N  m& ~6 U6 P# H
2 {; z- g  v: `) C$ }% k1 _( A% M6 k. s; B; O# C7 ]) G% b
; C9 H) x1 B4 O& j8 c$ h  G  Q

2 O+ ]8 W! p( a3 ~5 f测试结果:+ D) h9 ]$ J, Z

该用户从未签到

2#
发表于 2020-9-24 14:51 | 只看该作者
NSGA-Ⅱ算法C++实现
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-11-4 19:58 , Processed in 0.187500 second(s), 26 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表