找回密码
 注册
关于网站域名变更的通知
查看: 444|回复: 1
打印 上一主题 下一主题

学术界科研与工业界研发有什么区别?

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2020-8-12 13:34 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
6 l0 h2 x3 |0 c1 I
学术界的科研更多的是Novelty驱动。* H0 n, R+ @* e8 d7 j; c8 |' j
一般看到的论文分两种。一是对于已有问题,是否有一个好的想法能够启发他人,是否通过这个好的想法能在公认的数据集上获得领先的结果。因此,在刚有deep learning方法的时候,各种简单朴实的方法,看上去都是新的好的想法,能够启发他人,也能在各种数据集上获得不错的结果。- C' j! E+ E  B2 a
比如第一次看到Fully Convolutional Network,感觉全卷积网络做分割问题就非常inspiring呀,感觉自己道理上应该也能想到呀,就是没总结的这么到位过。在NIPS Faster RCNN发表前,同师弟刘枢在办公室也在讨论类似的方案,想着开完CVPR回来试试,结果过了几天,arxiv上就刷出了做的更完备,考虑更周全,实验也非常solid的方案,真是自叹不如。* u9 u' J6 }3 {7 u5 `, O
但是随着时间的推移,越solid的结果就会意味着更多的实验算力support,比如我们自己做过的很多比赛方案都是大量实验中大浪淘沙的部分,由此,这也变成了很多人啃过的硬骨头,攻克的难度在逐步提升。新方法因为已有了非常多的排列组合,也会慢慢变得复杂或套路化,能激起researcher普遍欣赏的感觉就越难。
  }" \# ~$ N& ^+ u另一种是创造新问题,是否能够发现新的,有意义的问题点,帮助后来的同学找到更多值得做的课题。这个方向上,比如之前的Fine Grained Classification,Instance Segmentation等,到近期大家推的cognitively inspired AI,self-supervised的方法,都是类似思路。每次开会大组或者大公司试图构建个dataset,办场workshop、tutorial,也都是类似的想法。但是这里有个trick,历史以来大组大牛创造新问题影响力大,越不知名的实验室即使推同样的东西也难有人follow。原因自然会有不同团队本身视野的差异,更多的也在于科研本身也是要拼影响力的。影响力本身就是一个团队长期沉淀的能力背书,能进入这样的团队本身也代表了较好的reputation。
+ f4 A0 |5 C" J+ x2 g当然,学术界科研另一个重要点是要会讲story。如何用简单容易听懂的语言让读者更明白你的思路,且通过详实的实验认证它的可靠程度。这个技能点其实很重要,即使是在工业界工作中也如此。在工作中非常明显的能够发现读过PhD的同学相对更会present工作,这样能够让你的partner、leader、和甚至你的团队同学更容易了解和知道你的思路,更容易得到工作上的认可
+ Z( c3 i3 X$ W+ i. \工业界的研发更多会以是否Work、高效而驱动。8 Z0 ^0 O7 {- e
抛开要把model训得很有novelty,我们就可以尝试更多更朴素的思路,即使调loss weight调lr调augmentation,只要能涨点都是好的经验。因此做起实验来会更少束缚,长期的积累中也是会发现各种不novel的knowhow中一些闪光点。如果有好的leader辅助,也是可以总结成不错的research工作(因此大家就会发现商汤各个团队每年都发非常多的paper)。( s: ?# W* \% q1 O: [
工业界研发另外不一样的部分是,需要遇到很多多人协作,知识传承的部分,与实验室做research单打独斗不同,一个好的代码风格,一个好的开发流程,以及能够完整的记录你的思路和实验过程的文档,都是显著提升团队生产力的关键点。最近会经常发现,不少成绩好做研究的同学都缺乏基础的代码以及开发相关的培训,这一方面同学校的基础教育的内容不太跟得上变化较快的开发模式,另一方面这也与做research时,大部分同学只需要自己看懂自己和师兄的代码有关。在校期间如果能多尝试参与一些开源社区的开发,给好的codebase(比如吹一波mmdetection)多贡献几次代码,相信会对此有更深的理解。( ]( ^2 Z1 V, e! c- q& [) s, O
工业界将问题实际做work,也会遇到更多从系统搭建开始的深坑,这些看似dirty的工作实际上是整个系统能够work的核心。这些是在学术界做research不大会遇到的(毕竟大家都是从前人做好的database起步)。举一些简单的例子,选什么摄像头接入、解决摄像头驱动问题、调摄像头ISP得到一个更好的成像质量、怎么给图片打tag获得准确的时间戳、不同设备之间怎么共用同一套时间体系、怎么设立数据标注原则(电线杆后的人标不标)、怎么高效的自动做数据的筛选...... 所以很多同学来公司实习,也会接触到不少这类型的工作,这其实是业界最valuable的部分,是从头做好一件事的前提。! f( L) {0 }7 p: k
所以总结一下,学术界的科研和工业界的研发各有各的特点,看你自己长期的兴趣更在突破技术的边界,还是更在希望利用已有知识实现实际领域的应用。长期看,去做自己最感兴趣的工作,才是最重要的
. ?% x. z2 T7 n" p4 s( f
" E# n/ g  \8 W6 H; X) F
8 e% F9 p" K7 O
$ Q& Y" V$ `3 y! M/ l$ \

该用户从未签到

2#
发表于 2020-8-12 14:22 | 只看该作者
一个好的代码风格,一个好的开发流程,以及能够完整的记录你的思路和实验过程的文档
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-6-23 15:28 , Processed in 0.078125 second(s), 23 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表