|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
关于floor函数的作用:
( ~1 r2 ^& i4 Y- j" N, T7 J# L% y4 k' i Q7 O5 Q
floor:朝负无穷方向舍入
6 m/ N, B- R6 t& B3 x4 h# k. \
: t8 h& H) ^+ z7 x, _! cB = floor(A) rounds the elements of A to the nearest integers less than or equal to A.5 [$ y' s$ m1 |! R
" C( K' d1 h% F- i; t
ceil:朝正无穷方向舍入$ _: d7 @% Q. Z7 r
! M$ [! q% _6 d \ b
B = ceil(A) rounds the elements of A to the nearest integers greater than or equal to A.
4 `0 H) C* P6 V- \5 Y/ e1 V0 q/ `9 J& Q( b
fix:朝零方向舍入
5 p' H% P( X ^
% }/ V, H! ^6 `6 cB = fix(A) rounds the elements of A toward zero, resulting in an array of integers.! n' r4 Y0 s9 Q8 [* b3 Z% _8 M
; M Y/ c# Q4 a( h$ g
round:四舍五入$ w4 j# i1 l/ b" x- l: H3 u
* i* Z0 C! `. n( G$ D* r$ {B = round(A) rounds the elements of X to the nearest integers. : s' V2 ?& W( Q7 w# R, q8 L
# i* g# Q3 |( ?$ m3 l
norm:求矩阵或向量的泛数 E7 v3 K0 U+ x0 D4 [$ {: |
* D, M/ E, G, Z) T/ {
x = [1 2 3 4 5 6];
! d3 p' X5 ]( r: t% U* T' H8 f& O5 C2 v4 o1 A8 ~3 M
norm(x) = 9.5394
& s% M- E7 Q! p7 ^/ E, p; q( s* S' k7 V
Example:* ~$ ^5 o" |9 F- {4 V# j
, O9 X0 M$ ] ?4 B4 d6 A: h9 R# X
a= [-0.9, -2.1, -0.4, 0.3, 0.8, 1.1, 2.7, -1.2+2.9i];0 n, H; g$ t' x
& F/ k& O0 _6 W' n$ Y9 [! Qfloor(a)=[ -1, -3, -1, 0, 0, 1, 2, -2+2i]9 Q* b2 ]0 R/ _9 d( l) X" B
1 P. y" U( V+ j* d
ceil(a)= [ 0, -2, 0, 1, 1, 2, 3, -1+3i]! R/ e3 K' K6 }: e' N5 d" _ r
" p- q/ F0 s+ d2 w/ w/ }fix(a)= [ 0, -2, 0, 0, 0, 1, 2, -1+2i]1 e B( p! i5 [* {3 v
' ?- g: h9 @" x! t7 lround(a)=[-1, -2, 0, 0, 1, 1, 3, -1+3i]& k5 o! O- t" z" r8 z9 L
& Q1 y6 j5 l4 E) }+ q' Y' l注:For complex X, for all the four fuctions the imaginary and real parts are rounded independently( @ N+ \# Y. I' `6 |, ~0 `2 r
& \1 w2 c( ~8 Q* o) w- a
, o1 H) z- t: W# ]
( g& t/ D% }& j' q |
|