找回密码
 注册
关于网站域名变更的通知
查看: 597|回复: 4
打印 上一主题 下一主题

怎么求点到椭圆的最短距离?(已知椭圆方程A*X*X+B*X*Y+C*Y*Y+D*X+E*Y+1=0,已知点...

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2020-6-28 10:45 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
怎么求点到椭圆的最短距离?(已知椭圆方程A*X*X+B*X*Y+C*Y*Y+D*X+E*Y+1=0,已知点(X,Y))
, i- O3 S" z; f" Q# P1 Y8 ?

该用户从未签到

2#
发表于 2020-6-28 11:07 | 只看该作者
(1)求最短距离呗,D = (x-x0)^2+(y-y0)^2。需要for循环
5 o; {+ k- x' y2 c1 _8 s+ ~(2)采用最邻近方法

点评

谢谢,我去试试  详情 回复 发表于 2020-6-30 14:43

该用户从未签到

3#
发表于 2020-6-29 14:22 | 只看该作者
给你现成的参考例子,论文,里面函数都有,2 `6 ?9 @, D9 ^4 Y  Y
Matlab在离散点拟合椭圆及极值距离计算中的应用

该用户从未签到

4#
 楼主| 发表于 2020-6-30 14:43 | 只看该作者
赵小夏 发表于 2020-6-28 11:07
2 w$ u; l5 M8 Q4 j(1)求最短距离呗,D = (x-x0)^2+(y-y0)^2。需要for循环) O4 U& t" B' S, E
(2)采用最邻近方法
" i& V. m( W3 r
谢谢,我去试试4 O8 R% i* E& [+ W6 \
7 y# m: E3 o4 n8 Y, J* K8 v6 G+ o

该用户从未签到

5#
 楼主| 发表于 2020-6-30 14:44 | 只看该作者
IBB-EUT 发表于 2020-6-29 14:22
2 X' \/ m3 G) H# s3 ^5 k# T给你现成的参考例子,论文,里面函数都有,
$ [% a. I$ ^7 x4 bMatlab在离散点拟合椭圆及极值距离计算中的应用
3 Q1 z9 \/ ^$ L2 x- k

2 ^1 O& p& t( [& ~" q9 c  K
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-7-26 09:54 , Processed in 0.140625 second(s), 27 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表