|
方法一:
1 D, M& _: _( w: q先对曲线方程(x+y)^2*h/(G*L)]+(b+0.07*h)*(x+y)/L-0.85*x+0.07*G*b/L=0两侧同时对x求导
A7 r! J0 |+ }6 K F得到x,y(x),y'(x)的关系,并求出y'(x) = F( x,y(x) )的表达式
' b/ _8 C: ? P& P8 @# a然后将切线通过点的坐标(x0,y0)带入联立方程组中
5 R0 I6 E) F5 e(y0 - y)/(x0 - x) == y'(x) 即 (y0 - y)/(x0 - x) == F( x,y ),几何意义是,通过已知点(x0,y0)以及曲线上一点(x,y)的直线的斜率是曲线在该点处的导数1 d' u7 n2 _+ l: q
(x+y)^2*h/(G*L)]+(b+0.07*h)*(x+y)/L-0.85*x+0.07*G*b/L == 0,几何意义是,点(x,y)在曲线上
e* p H6 T9 O4 N% F联立方程组求解,可以求得两个切点9 Y! m4 ]2 h5 T$ p s7 ]( ]
(7203/4 + (136073*sqrt(7/374))/8, -(1715/4) + (50519*sqrt(7/374))/8)与
# N8 @0 R* n2 s* C0 L0 m# A(7203/4 - (136073*sqrt(7/374))/8, -(1715/4) - (50519*sqrt(7/374))/8)( G0 D; ?- E" I) P/ V* g8 K) }' K7 T
数值解即(4127.74, 435.179)与(-526.244, -1292.68) |
|