|
方法一:
" l, l# k' e6 N* _" S1 K) N先对曲线方程(x+y)^2*h/(G*L)]+(b+0.07*h)*(x+y)/L-0.85*x+0.07*G*b/L=0两侧同时对x求导
. B/ J4 [+ C/ ^: z得到x,y(x),y'(x)的关系,并求出y'(x) = F( x,y(x) )的表达式; G& o+ ^' y' z4 Z# b) ]& k
然后将切线通过点的坐标(x0,y0)带入联立方程组中
" }- e9 O5 {7 q(y0 - y)/(x0 - x) == y'(x) 即 (y0 - y)/(x0 - x) == F( x,y ),几何意义是,通过已知点(x0,y0)以及曲线上一点(x,y)的直线的斜率是曲线在该点处的导数
$ j, s% [6 x+ h! f- P(x+y)^2*h/(G*L)]+(b+0.07*h)*(x+y)/L-0.85*x+0.07*G*b/L == 0,几何意义是,点(x,y)在曲线上
/ x0 V' n% X9 i6 B0 Y ]/ j联立方程组求解,可以求得两个切点
' K( F' M# `8 H& ]. t) b(7203/4 + (136073*sqrt(7/374))/8, -(1715/4) + (50519*sqrt(7/374))/8)与
. ~. T4 y! L6 ^$ J( C% w(7203/4 - (136073*sqrt(7/374))/8, -(1715/4) - (50519*sqrt(7/374))/8)
7 b2 h' N7 ~$ d( Y& ]$ N数值解即(4127.74, 435.179)与(-526.244, -1292.68) |
|