|
|
方法一:
: f8 T* O0 S* m+ U先对曲线方程(x+y)^2*h/(G*L)]+(b+0.07*h)*(x+y)/L-0.85*x+0.07*G*b/L=0两侧同时对x求导0 T& v) p# \: o8 A% R! _6 O- c9 k! F0 `
得到x,y(x),y'(x)的关系,并求出y'(x) = F( x,y(x) )的表达式
- g% `& T0 `% O2 B, j% N然后将切线通过点的坐标(x0,y0)带入联立方程组中- O& H( I# Q6 `8 k8 B2 a) q$ @
(y0 - y)/(x0 - x) == y'(x) 即 (y0 - y)/(x0 - x) == F( x,y ),几何意义是,通过已知点(x0,y0)以及曲线上一点(x,y)的直线的斜率是曲线在该点处的导数
& L$ g: {1 q, K# M$ E(x+y)^2*h/(G*L)]+(b+0.07*h)*(x+y)/L-0.85*x+0.07*G*b/L == 0,几何意义是,点(x,y)在曲线上) W2 c: N3 A0 k
联立方程组求解,可以求得两个切点+ _& i! Q) s* c, l( e; L' {
(7203/4 + (136073*sqrt(7/374))/8, -(1715/4) + (50519*sqrt(7/374))/8)与
5 k, n: p5 Y8 s/ S% T(7203/4 - (136073*sqrt(7/374))/8, -(1715/4) - (50519*sqrt(7/374))/8)
+ Y* g4 A( I n' `, o数值解即(4127.74, 435.179)与(-526.244, -1292.68) |
|