找回密码
 注册
关于网站域名变更的通知
查看: 405|回复: 1
打印 上一主题 下一主题

NSGA2算法MATLAB

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2020-5-20 10:18 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
那个NSGA2的算法不具有普遍性,下面参考课国外的课题小组的代码重新修改了内部冗余内容,使之能够自定义优化函数。 ! \7 q% T+ N: j3 G% K

  ?, |+ U$ e0 z2 s) n  B, ^' h) j
NSGA2的过程为:
: E1 r' o% i  W/ G4 {- R% P9 t( w! M- M6 T0 N" ^4 Q
1、随机产生一个初始父代Po,在此基础上采用二元锦标赛选择、交叉和变异操作产生子代Qo, Po 和Qo群体规模均为N6 a6 P3 ?% _# U2 O( `
- l7 j/ u- }9 h; }: a
2、将Pt和Qt并入到Rt中(初始时t=0),对Rt进行快速非支配解排序,构造其所有不同等级的非支配解集F1、F2……..
" [0 r1 I1 a6 W: b9 N7 v
2 f7 w7 `- W9 ?  J( d5 x3、按照需要计算Fi中所有个体的拥挤距离,并根据拥挤比较运算符构造Pt+1,直至Pt+1规模为N,图中的Fi为F3
# o4 f. G: k: r% q& i
5 P' _5 r- Z0 U7 E$ I& {下面是完整版的代码:/ p1 A7 z: X! R
5 g! `2 j  \; H4 j
①nsga2-optimization.m5 y! X, u% ]/ r8 j2 K. n+ i
2 ~& ?/ G, T# @4 T5 K. m
function nsga_2_optimization
, i  r+ [$ P1 ^% @* a# r9 z%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 \" n0 c# I/ J# m9 }7 b%此处可以更改, Q3 e( x( G2 k- X- `) ^" D( z4 S
%更多机器学习内容请访问omegaxyz.com
  b6 m1 c8 R: E# {$ Y6 }1 \: Z  Zpop = 500; %种群数量, T( Q; S- e* J. K' Y2 X
gen = 500; %迭代次数
. i2 S/ _! d: u. |; Z# P" N' \M = 2; %目标数量4 F* B1 [. y  k
V = 30; %维度
5 x7 O# u/ j# umin_range = zeros(1, V); %下界1 c4 a5 g& V0 d0 A
max_range = ones(1,V); %上界
* D( g* t7 l& y" ~6 i& ~%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%& J' K% U3 W! w( A; Z% I0 e9 d, j
chromosome = initialize_variables(pop, M, V, min_range, max_range);/ f" e- P0 L7 ^  P. l, c
chromosome = non_domination_sort_mod(chromosome, M, V);; m* X( [* U. K/ i% y

  l5 u' f0 w! f& v4 Z0 h: O: Sfor i = 1 : gen: m# w- a# U, ]4 [1 M
    pool = round(pop/2);
2 N) |# [) a9 }# C5 |( l    tour = 2;
+ r7 c) i5 P" ^% ?+ D9 N    parent_chromosome = tournament_selection(chromosome, pool, tour);# \$ ^* b9 J/ Z( \3 S
    mu = 20;
8 ^6 n* z* \) G1 C% L# F' J    mum = 20;
  r( |% Y4 U0 i0 i/ q; l9 n    offspring_chromosome = genetic_operator(parent_chromosome,M, V, mu, mum, min_range, max_range);
4 ~2 M0 b  \- Q/ S7 o0 h    [main_pop,~] = size(chromosome);
0 g, y' t) R$ _$ W* Q    [offspring_pop,~] = size(offspring_chromosome);
; }) e6 A/ x/ C8 P( i    clear temp
" }( m- S* U) x: t    intermediate_chromosome(1:main_pop,:) = chromosome;& u7 H) M7 J0 A$ P, {1 z
    intermediate_chromosome(main_pop + 1 : main_pop + offspring_pop,1 : M+V) = offspring_chromosome;- f6 k" V/ V; L1 |+ D) Y$ L) O
    intermediate_chromosome = non_domination_sort_mod(intermediate_chromosome, M, V);0 x3 \. ?$ K5 F$ y0 h0 j' @5 @* H
    chromosome = replace_chromosome(intermediate_chromosome, M, V, pop);
: b$ _; ?# {0 |) ?* h; Q6 N    if ~mod(i,100); m" Q. D5 W, X2 @/ l* G5 \
        clc;
" N9 n5 c( U3 F+ L        fprintf('%d generations completed\n',i);. _0 A1 C  u0 K) R4 ?! ]# K
    end; i2 Z( w, t/ N# N: z2 o; b+ B2 x
end
% Z# t) ]2 p# ~  J: I; o5 _, E& Q" [5 J2 [5 R6 @
if M == 24 l2 p( U2 |! S% p7 U! @
    plot(chromosome(:,V + 1),chromosome(:,V + 2),'*');
+ K! P( j  U/ t' I% I5 N) A    xlabel('f_1'); ylabel('f_2');9 o# E5 e& J  ?3 L* Q
    title('Pareto Optimal Front');
1 R" C  E, T7 P. I+ A8 f$ N* k; felseif M == 3
, e# @( u- y+ ^& ]    plot3(chromosome(:,V + 1),chromosome(:,V + 2),chromosome(:,V + 3),'*');* q7 M9 y$ _# V+ O' ^) z
    xlabel('f_1'); ylabel('f_2'); zlabel('f_3');
8 l# J" c6 X- _" Q: s    title('Pareto Optimal SuRFace');
( @: d: h  o+ d7 t1 ?end8 K" W% y2 z# y5 C* @, C; _( q
6 A5 t& t7 K: @1 l/ N( V
. n! |) L# g5 S2 L9 q5 W: b2 H
②initialize_variables.m2 Y2 J! i$ K2 B4 f, U  y" K

0 n5 H+ S" @3 `, |% @+ G8 afunction f = initialize_variables(N, M, V, min_range, max_range)
7 L* b7 O2 h4 @2 {& [2 ^min = min_range;
& [. x* y7 H) ?" S; xmax = max_range;
5 h% q2 L: K/ sK = M + V;2 V. H3 W2 ?& Q, i4 c5 k  s4 ]: f" ?- w
for i = 1 : N  b& @  J, m9 O+ ~
    for j = 1 : V/ M) j* X9 Q" C1 g/ G5 `
        f(i,j) = min(j) + (max(j) - min(j))*rand(1);
( o/ K9 j+ ]  r, a, R* }    end1 q: f4 N7 Y! L$ c. E5 B
    f(i,V + 1: K) = evaluate_objective(f(i,:), M, V);# l1 v- J% ?" |: g0 v8 X
end
! F* a7 H" O$ u9 G- }* `5 Y9 J. Y! W: a$ R6 Q: E
4 ?/ M- F$ |' J# a+ N; \7 ~( c
③non_domination_sort_mod.m0 g8 E! p  z, G3 O
6 `6 D6 q$ R; s$ d" Y8 l# S+ g
function f = non_domination_sort_mod(x, M, V)1 G' \. g3 p! I9 e% J2 V
[N, ~] = size(x);# n* [6 ]2 ?5 y2 e
clear m% }' L8 l0 {/ j5 M4 r
front = 1;
+ O' J. k$ L8 W3 Q( t7 L9 T- mF(front).f = [];
) B0 @4 Y: l+ Windividual = [];- f, V% |$ O7 K

) l( q% F+ ]( y- y( {4 Hfor i = 1 : N
; m0 K+ n. k1 i, S1 Z    individual(i).n = 0;
5 Y" i: m, R4 b+ n6 R    individual(i).p = [];9 P' f" t( W4 ]+ S* t$ K  J5 x
    for j = 1 : N/ H! {  |; E) C
        dom_less = 0;+ T6 ^/ B5 `1 i% h
        dom_equal = 0;
+ M8 d1 D0 U* K' _# r: @        dom_more = 0;( g  b) Z3 t) p2 ]: H4 k8 H
        for k = 1 : M
) v. t4 P3 R* O3 }/ W% G1 A" g# D! [# }            if (x(i,V + k) < x(j,V + k))
2 D# y0 s$ z; U1 J$ T0 E' o; E# R                dom_less = dom_less + 1;
1 r- r; P$ ~& @6 @6 E/ D            elseif (x(i,V + k) == x(j,V + k))
, C4 i$ d# j, E8 v& M                dom_equal = dom_equal + 1;% @. r( b: d1 I4 B6 {6 O
            else
  x* F* |. Z- p4 G! q4 \4 M' c8 X                dom_more = dom_more + 1;6 P! u" d4 M3 ~
            end
6 }$ o+ _6 G& C3 B% A1 Z# h        end7 h; Y/ Q( P/ R1 R) z; x! a. Z
        if dom_less == 0 && dom_equal ~= M0 W$ L- @( l: `# {" }
            individual(i).n = individual(i).n + 1;
* g/ F- T) @4 \  _        elseif dom_more == 0 && dom_equal ~= M
, l7 t+ l9 V/ z9 x3 ]5 }4 n& }            individual(i).p = [individual(i).p j];
0 P& K) T$ }- I. M" [        end: @2 U6 j! N- R. M7 S8 n( q+ X; W3 `
    end   
& N8 ^7 Z, X. x& W; z  d( U6 q    if individual(i).n == 0
$ d* V$ g6 w2 l7 y        x(i,M + V + 1) = 1;
6 k8 s& K: ]# c  h        F(front).f = [F(front).f i];
3 R- v0 V6 k: v+ b* |4 q    end
# }. W7 ]# L' wend
0 D1 h3 p, ~& T/ Z: M1 ~
0 c- e, Z0 I  R  C: Uwhile ~isempty(F(front).f)
; Q  K' R/ O3 T0 E9 F$ E) t   Q = [];. |: p! {" i% Z
   for i = 1 : length(F(front).f)# {$ p# x- ]* A9 k& n
       if ~isempty(individual(F(front).f(i)).p)
+ j2 H% H. \# @9 s" s9 {6 `            for j = 1 : length(individual(F(front).f(i)).p)
- h" N0 T$ B4 P1 y5 Y/ x                individual(individual(F(front).f(i)).p(j)).n = ...
. B# G* z4 @0 A  X' K1 ^1 d. k                    individual(individual(F(front).f(i)).p(j)).n - 1;: y; I- G( d; I9 J8 {: N4 y
                if individual(individual(F(front).f(i)).p(j)).n == 0
: f5 j% C9 Y* ]7 J                    x(individual(F(front).f(i)).p(j),M + V + 1) = ...* A- Z* g, c* d
                        front + 1;
- _5 k* ~; p9 m                    Q = [Q individual(F(front).f(i)).p(j)];
: A8 _3 L. l, ~' s  c/ a8 l                end
! x. Z6 K! y: J1 \4 c$ R            end5 M8 G# o# C$ h! ~# s: v2 p
       end  c% P  T7 }0 Z- h/ e
   end
& Y1 v' Q8 x: Y1 k' B1 D8 j  A   front =  front + 1;
2 g9 a7 U! j1 Z8 j- d) x0 E4 b   F(front).f = Q;
: h1 C; C1 Z# e+ T" Z* Bend1 g; y5 W- {6 _% V, v. L
, I% l/ n! f/ g3 W
[temp,index_of_fronts] = sort(x(:,M + V + 1));
( ~/ o( `* C# z- t. r* O0 tfor i = 1 : length(index_of_fronts)
/ N& U; {: @. T$ Y, x    sorted_based_on_front(i,:) = x(index_of_fronts(i),:);2 |+ m+ f2 x8 [; g
end. ^* r+ L9 L6 i$ V! P* z( P  m1 x6 W
current_index = 0;$ q( F* A4 I  f

" n# V2 M! T' f% a" |%% Crowding distance
2 K3 r- w5 L- `3 N3 e9 `( J- o5 R7 s) K, L) v% U  h
for front = 1 : (length(F) - 1)5 T7 d: b" f6 L5 O7 k
    distance = 0;4 `: \$ A) y6 {' C0 P  X
    y = [];
) C/ {- ?, G% {  j# i. d    previous_index = current_index + 1;
3 f" d8 x& a% S! u0 Q% f3 n% U    for i = 1 : length(F(front).f)
6 ^  A( |% t) U, t        y(i,:) = sorted_based_on_front(current_index + i,:);$ h5 Z9 i! h* k
    end" n8 o" t  C9 K' b' Z% j
    current_index = current_index + i;
& D# E# K/ }& V; p) b    sorted_based_on_objective = [];
1 D% h; R* Y$ I9 k4 u, P    for i = 1 : M
& l( {& s' }, f5 t9 [        [sorted_based_on_objective, index_of_objectives] = ...; ]7 k4 v4 H# r" X& k
            sort(y(:,V + i));# _8 h9 T: O: m
        sorted_based_on_objective = [];. k# R# n3 ]4 r  e: X7 {
        for j = 1 : length(index_of_objectives)
+ ?# f2 \3 z" o) Z  Q0 W            sorted_based_on_objective(j,:) = y(index_of_objectives(j),:);3 U) x& r, c9 G" b* @4 J) B
        end
# P9 H4 }& }) u5 Y        f_max = ...
' M# i( k! q! {1 Z0 E            sorted_based_on_objective(length(index_of_objectives), V + i);2 b0 [; ~/ V+ Z
        f_min = sorted_based_on_objective(1, V + i);" ~9 I* H) ?* }$ O+ K+ K' L
        y(index_of_objectives(length(index_of_objectives)),M + V + 1 + i)...
- y# t! U8 e- f4 w; ?; S. [            = Inf;
( M& X" n$ p( e: h        y(index_of_objectives(1),M + V + 1 + i) = Inf;0 X" u% m. G2 h5 q( c
         for j = 2 : length(index_of_objectives) - 1; Z: e2 k- T& X
            next_obj  = sorted_based_on_objective(j + 1,V + i);8 k! R- _' g+ W
            previous_obj  = sorted_based_on_objective(j - 1,V + i);
" ]2 \' o, h) f* I1 c8 m/ Z3 k            if (f_max - f_min == 0)8 J4 V7 @, h$ F& S% h
                y(index_of_objectives(j),M + V + 1 + i) = Inf;  j' n9 s' P4 C- `
            else- [, b: K0 F7 L2 k6 v/ U
                y(index_of_objectives(j),M + V + 1 + i) = ...! w" E* Q7 N. [& l& L1 |
                     (next_obj - previous_obj)/(f_max - f_min);/ y% e/ P! j( g6 h1 d5 x- f; {, ?
            end( s) b1 E" e" p! [4 U. X
         end$ b2 C1 o4 S9 Q  X4 I
    end
5 l" S7 P( h2 T6 C0 O2 |    distance = [];; |. ~" L  h; H) _- P$ |
    distance(:,1) = zeros(length(F(front).f),1);. w5 j3 u7 R/ @9 F' q
    for i = 1 : M- M: W" u# F' x* Y: M1 ~' L
        distance(:,1) = distance(:,1) + y(:,M + V + 1 + i);
  U7 H! P4 a+ G0 m( `, w& \    end# y( g5 G% E' L4 y6 W
    y(:,M + V + 2) = distance;! f6 w+ W) L  \2 s
    y = y(:,1 : M + V + 2);1 u1 q6 G! [, C/ z
    z(previous_index:current_index,:) = y;
  B9 [' \0 h  @( v3 zend
' \( ]! X( T/ ^9 L4 af = z();
9 ^8 n- R% B. z1 ?$ c* U1 q: c! }
  U/ |" A" m, G. _2 h% R; Q% i3 d  P
④tournament_selection.m2 n9 x8 a" u, S/ C" r
. y0 r* @: j7 s! S
function f = tournament_selection(chromosome, pool_size, tour_size)
& P$ C6 L! O7 C3 t1 g[pop, variables] = size(chromosome);
+ D9 `7 U" o: H8 T* I8 xrank = variables - 1;$ L6 ^" E! u  J. V- X
distance = variables;& v$ r! I: @9 C6 n6 C$ r: Q
for i = 1 : pool_size
# \8 S+ i) ], |2 s* M& D    for j = 1 : tour_size
* r/ p/ h% P0 F. e+ }+ Y" v: _8 @        candidate(j) = round(pop*rand(1));9 G( h: ]) `) A0 C) R* |5 r
        if candidate(j) == 0
6 e) P+ V% y# o9 A/ c8 d. z            candidate(j) = 1;- a! m5 @2 M* f
        end
: B" P; B* Q' P$ z+ G0 T        if j > 1
5 C" c* ^& z/ I+ U# Q! \            while ~isempty(find(candidate(1 : j - 1) == candidate(j)))
2 @4 ^- a9 B* H1 C6 Q& l7 {                candidate(j) = round(pop*rand(1));4 D( Y' x9 y5 F" Z
                if candidate(j) == 0' b/ @1 E! c6 w# Q% ]* U+ N- M! z
                    candidate(j) = 1;3 Y3 F0 X3 S5 ^9 V3 w
                end
0 K! t8 B6 J) Y0 k" y0 |* o            end0 B; L! {1 j9 f2 p* k
        end
. \" L& q& [9 g7 y  ~7 w) S$ `  I    end; O& K( o; M" t) j1 t2 a
    for j = 1 : tour_size8 D$ Q) |; ?8 |8 p: s# H" g
        c_obj_rank(j) = chromosome(candidate(j),rank);. r- @4 M( ?  [( m9 r
        c_obj_distance(j) = chromosome(candidate(j),distance);
6 H; P+ I' {3 n' |' k    end
4 E" P& o: x& B7 Y& l$ v/ R    min_candidate = ...
/ T6 A5 W% L" q- C$ }        find(c_obj_rank == min(c_obj_rank));# W$ A: @4 h5 s( }: w% J+ d2 Q
    if length(min_candidate) ~= 1+ Z9 Z; E+ Y% K* f4 Y2 c
        max_candidate = ...
; R5 p; B9 }& ^/ z! I        find(c_obj_distance(min_candidate) == max(c_obj_distance(min_candidate)));, U+ i2 I8 P1 W3 S
        if length(max_candidate) ~= 12 E" d7 |: f3 B3 N. ~
            max_candidate = max_candidate(1);
6 G3 c6 k# Z! U2 [+ F        end
4 p5 p0 R; O# C6 V' N& `: j. W        f(i,:) = chromosome(candidate(min_candidate(max_candidate)),:);4 u. y* F2 x! U6 b0 k# C1 x
    else7 |. a0 y8 q6 y: y8 H
        f(i,:) = chromosome(candidate(min_candidate(1)),:);. g) I' ], P, {7 [$ E4 Q# y: p5 n
    end
: Q) V' C( \. W& ^6 {+ Gend
. o  m& [% s/ W# d
) N9 A- j( S; @5 g) X1 h/ j1 c3 d
⑤genetic_operator.m
" h- ~7 {4 ?6 o6 o0 F
: G* Y8 r% e. c3 h' ofunction f  = genetic_operator(parent_chromosome, M, V, mu, mum, l_limit, u_limit)( ]; R( I- O' O( G2 \4 A3 `
[N,m] = size(parent_chromosome);
. Z5 }" s. \! s! O: l2 i  m0 l7 q  K& g" C
clear m
, \# j# h* i0 ap = 1;7 ~$ f1 G' F5 C% U4 F+ O! K
was_crossover = 0;
. L6 p; P6 l2 z0 X* rwas_mutation = 0;
/ Q. G- \* S0 M: ], T
: v0 P# m" S# r  G2 K( d( U( v: }9 z+ I3 I
for i = 1 : N
& t9 @) E0 x! a2 H% L    % With 90 % probability perform crossover
8 n, j4 Z, P5 k; `" H1 e    if rand(1) < 0.9& d3 ?7 R9 X/ A# f+ c; z* A
        % Initialize the children to be null vector.
8 }) r. j  J* {( k7 C        child_1 = [];/ A9 H) x0 r# v6 L1 g! O; e
        child_2 = [];
- C+ K6 C, M' V8 a" D' R        % Select the first parent
- X% |7 k1 T" g" Q, q$ A        parent_1 = round(N*rand(1));5 G. f6 u, ~  H, ]  @( M
        if parent_1 < 11 h6 u7 q9 o) C
            parent_1 = 1;
+ ^9 h5 S; f( v3 Z1 ]        end) `2 d5 R: M* M0 R9 ?( @
        % Select the second parent5 F2 L. f  t& q& l1 N2 ]1 b2 o% B
        parent_2 = round(N*rand(1));
3 Z/ c# j) a% q5 {        if parent_2 < 1' I" j$ _# q$ ?, ^: O
            parent_2 = 1;9 u2 U% N$ ]) v7 P3 K+ d
        end
! u& j/ o$ Z0 O8 Q6 I  z9 ~        % Make sure both the parents are not the same. 7 k* x0 z/ p6 k/ f
        while isequal(parent_chromosome(parent_1,:),parent_chromosome(parent_2,:))6 |# G! D% R6 b8 X/ H8 B5 q8 l# q
            parent_2 = round(N*rand(1));
( Z6 L+ ^' ]) a0 W; _1 Z; u            if parent_2 < 1
7 h, a+ v1 x& ?3 n6 g2 G# C4 M" V                parent_2 = 1;
! I& P  p6 ?) ?            end- y6 z. G2 `3 x% T
        end% e$ n) T" h0 j# z* x* J/ \  ?
        % Get the chromosome information for each randomnly selected
: g  P5 n' f" L- [5 {        % parents+ m& ?% Y) [' ?0 R4 l8 k
        parent_1 = parent_chromosome(parent_1,:);: r/ X; ^4 _4 R: b% H- w
        parent_2 = parent_chromosome(parent_2,:);! {7 E) q' g0 |5 M& O
        % Perform corssover for each decision variable in the chromosome., w5 ?, W) ]) {4 A$ k; c7 A# ^$ F  i
        for j = 1 : V
2 E5 A# e2 B2 j2 l: u, S( F" ?            % SBX (Simulated Binary Crossover).- ?( I% s5 I8 {7 ]" _0 Y' P
            % For more information about SBX refer the enclosed pdf file.
# I- p  a6 V! `5 a) n! n; K            % Generate a random number6 d4 d( L3 q0 Y
            u(j) = rand(1);
2 S; m8 t& J' Z4 _: O* J            if u(j) <= 0.5
2 D; v( M4 e$ d% j! H6 g                bq(j) = (2*u(j))^(1/(mu+1));0 z* ?' q% i/ Q7 ?8 ?# H7 }
            else" a. E& ~/ K/ \* L/ ^
                bq(j) = (1/(2*(1 - u(j))))^(1/(mu+1));+ [% Z" f0 v! i# F
            end
5 k' e" f5 I/ L7 g0 I& ~            % Generate the jth element of first child2 c! h% V8 J- m
            child_1(j) = ...
; A9 i9 R! ~( E( K5 X) L                0.5*(((1 + bq(j))*parent_1(j)) + (1 - bq(j))*parent_2(j));7 L" I# ^- D# k9 Z& K9 t
            % Generate the jth element of second child
! a8 L1 V- |7 z& F! k% J  ^            child_2(j) = ...  t( g8 U  `) Q5 ~& L) {
                0.5*(((1 - bq(j))*parent_1(j)) + (1 + bq(j))*parent_2(j));  P0 ^  \' _- }6 R( f# h. S
            % Make sure that the generated element is within the specified/ C8 u. F4 s2 u' ]1 u9 f) ~
            % decision space else set it to the appropriate extrema.  \% r% S. J% }
            if child_1(j) > u_limit(j)
7 t! V7 d8 d% Z  s5 Y! _                child_1(j) = u_limit(j);
, @8 |. i' p8 q9 {  h! Q: b            elseif child_1(j) < l_limit(j)
, P* W- [5 J4 I. F& ^                child_1(j) = l_limit(j);
, ]3 j2 j* `+ \* T6 A* O, W            end# W. b8 k/ R3 j' B1 v
            if child_2(j) > u_limit(j)
$ K& n. r) K6 m5 I                child_2(j) = u_limit(j);# S/ O' C. i5 E. g6 H
            elseif child_2(j) < l_limit(j)# S" F+ w+ Z5 i$ X0 J0 G) E1 K; T
                child_2(j) = l_limit(j);- a3 o8 h! C, x" f, d
            end, d* E5 U9 a9 l" @- }# i0 T
        end3 \/ @, E1 m8 q* m' q8 H
        child_1(:,V + 1: M + V) = evaluate_objective(child_1, M, V);
0 R7 R3 |% f* \  F% G        child_2(:,V + 1: M + V) = evaluate_objective(child_2, M, V);
4 v" T6 f: Y* S6 J        was_crossover = 1;
) }8 P: |% ]3 \6 ?* D3 R6 y0 j        was_mutation = 0;( B3 P; F0 m3 M5 S$ }8 V# S3 E  \
    % With 10 % probability perform mutation. Mutation is based on
) s, l; L9 J0 \; p    % polynomial mutation.
# ^+ _: B. @( f+ K9 B' _    else
! }: Q: K/ D$ S7 ~7 A9 R6 N( U        % Select at random the parent.  s3 z; y! ^$ i+ I: k- [* t
        parent_3 = round(N*rand(1));
5 D- l- Y) G) ]5 I        if parent_3 < 1
. ?/ {) b/ G- e4 X# A            parent_3 = 1;
; g6 ^$ u! V8 I0 R0 @; ^% @        end4 r3 V9 D9 B  v* r! n
        % Get the chromosome information for the randomnly selected parent.6 ?7 r6 Q7 r6 a7 H) H  T7 [
        child_3 = parent_chromosome(parent_3,:);
: Q: q! c& ~! @/ ?0 Z9 R* ?, p        % Perform mutation on eact element of the selected parent.
# i* g8 q1 j8 N* G' B* u" m6 {        for j = 1 : V
% Y7 T6 x5 i$ m8 Z& V0 c           r(j) = rand(1);5 Y: |$ Y+ c4 P$ y* v& _
           if r(j) < 0.5% O5 l' S6 P; f0 l1 w" w# a$ H
               delta(j) = (2*r(j))^(1/(mum+1)) - 1;6 e# l7 c7 k9 @' E% `
           else! t# \4 o7 e9 U  }& Y! S
               delta(j) = 1 - (2*(1 - r(j)))^(1/(mum+1));+ S% H4 t7 D  t9 O3 H% ]
           end
2 y  v! G5 h7 a- w7 a           % Generate the corresponding child element.
1 }& W- ~: n, Y           child_3(j) = child_3(j) + delta(j);
9 {( s5 P/ T0 H+ `$ M! z8 l1 p- L* c           % Make sure that the generated element is within the decision' Z6 ]) ^; R( x8 W) S" O
           % space.
0 h8 j! P& W& V3 B           if child_3(j) > u_limit(j)5 Y4 ^' h/ A& c4 S
               child_3(j) = u_limit(j);
' t& @* e  C4 K, q           elseif child_3(j) < l_limit(j)* E! c5 M0 Z9 A) i1 O: D; `
               child_3(j) = l_limit(j);
2 S" N  P0 [/ E           end* k4 J+ j: [/ b- d  c( ~
        end
7 y1 H, i/ a/ u        child_3(:,V + 1: M + V) = evaluate_objective(child_3, M, V);
7 d$ @, R, c7 P$ y' m$ c        % Set the mutation flag1 y( V! S! ~5 ^3 J4 |. d% z
        was_mutation = 1;
$ S+ J2 k0 d' r0 w& b6 Y        was_crossover = 0;
, F/ X9 v/ w9 d( d7 a. Z8 s4 q    end
0 U: Z" J; [4 M' I- G    if was_crossover+ Q6 N* [+ F- ?2 I/ q
        child(p,:) = child_1;
9 i! K5 g' I: h0 P' d' k6 a. m        child(p+1,:) = child_2;
7 e; b9 ^. J2 I3 v  S- k        was_cossover = 0;
9 n* l$ Z9 ?: j; _+ [+ i1 T! X/ B        p = p + 2;$ p: P- v" Z* j/ y
    elseif was_mutation, ]# M$ e0 r3 e/ e6 R* L4 y/ W2 J
        child(p,:) = child_3(1,1 : M + V);$ u7 e: I* g/ e0 Z. ]0 {* a
        was_mutation = 0;
" b2 e8 H( r! a' |4 K1 Z6 R        p = p + 1;
$ _2 x( D1 ^5 d. c- n    end
5 G3 r% I' D, H2 j6 qend- u+ }7 L) @4 _  A( `  a$ D6 U, p+ s
f = child;: O# e6 x4 z: J2 p7 Y
& L1 ?# F0 v* P

0 n* \. e! P* C9 t- R⑥replace_chromosome.m
! B, b3 w  l$ X6 P. r1 S/ G4 M. p& J( T" `
function f  = replace_chromosome(intermediate_chromosome, M, V,pop)
. w! V- X! P/ i6 o, W1 Y) Y+ ~: Z/ H2 y8 P" ~
+ j) O" Z, f! `. g0 l
[N, m] = size(intermediate_chromosome);! x  `: b- K$ f9 D6 M( s

8 u( e, p( ]: i% W, T% Get the index for the population sort based on the rank- }/ S- V- `5 \/ _1 X% _7 @
[temp,index] = sort(intermediate_chromosome(:,M + V + 1));* N% V* j8 m6 G9 b+ U- q; J

* K' j) Z. F& G/ ^clear temp m6 E8 \8 @5 g, B2 ?+ C

; P% u, {) g0 p) V& T& C% Now sort the individuals based on the index2 S4 |; w4 w% O& ?9 h  i
for i = 1 : N* Z5 P& |* L0 O4 b4 ?  q% D
    sorted_chromosome(i,:) = intermediate_chromosome(index(i),:);  M1 g/ B- m6 ]
end% \& [' C" w/ n4 w* z, u

, @  Q; `) j* M" Q4 S* u3 ]% Find the maximum rank in the current population
$ X7 k9 F+ ^: l4 L2 w& e* ~, C( P9 @max_rank = max(intermediate_chromosome(:,M + V + 1));$ N+ |# y2 M& K( N* A
* X7 o* r3 R* ]9 U5 [  m0 _' L
% Start adding each front based on rank and crowing distance until the1 y* L/ h) e. S3 o' F
% whole population is filled.( i' J8 M& H( Z
previous_index = 0;
' W+ a- v- T5 u8 L, _" zfor i = 1 : max_rank* r& y. H: K" r( ?- b
    % Get the index for current rank i.e the last the last element in the
) y6 {: v$ j. ?) U, K/ M$ ?, y) h$ r    % sorted_chromosome with rank i.
. u  F- O- {/ v    current_index = max(find(sorted_chromosome(:,M + V + 1) == i));8 Q* }2 P  j2 @( I
    % Check to see if the population is filled if all the individuals with/ A3 k* d  D& E+ V) T" B& y
    % rank i is added to the population. ; H$ i- q8 J8 U
    if current_index > pop" r4 P3 U4 d% d1 s# K
        % If so then find the number of individuals with in with current
; T- w  `' g/ E; f        % rank i.  W6 O  h) D* r
        remaining = pop - previous_index;
! }* R( r/ r8 |8 _5 Q        % Get information about the individuals in the current rank i.
+ u( [( W, o+ j7 l* ]        temp_pop = ...
. R2 {- Q1 X! @0 s3 {9 x            sorted_chromosome(previous_index + 1 : current_index, :);! F. ~5 h- W5 F$ ~5 @) L3 B
        % Sort the individuals with rank i in the descending order based on* W" Q+ i  R% z% G
        % the crowding distance.4 @# c! S. }1 ^% S1 C) ^- b% `5 Z
        [temp_sort,temp_sort_index] = ...8 E" e0 }, Q3 ~. d% r
            sort(temp_pop(:, M + V + 2),'descend');
& W. K4 c% _, L4 a6 ~        % Start filling individuals into the population in descending order7 s. S% x5 h, d
        % until the population is filled.
6 ~( P& A5 b  [7 K9 W        for j = 1 : remaining
" A% A5 m$ C+ v            f(previous_index + j,:) = temp_pop(temp_sort_index(j),:);! U1 k. w$ @' x
        end
2 a/ h. {7 L: ]' m. h( q0 n        return;, f8 s% @  ^6 j! \
    elseif current_index < pop
. F8 V; r/ u1 T' Z2 i6 V' V        % Add all the individuals with rank i into the population.
+ {3 t: E3 l+ N$ ^        f(previous_index + 1 : current_index, :) = .... X; M, O6 b* h6 Y( P; p" K
            sorted_chromosome(previous_index + 1 : current_index, :);3 R+ W0 A; Y; e: {9 ^
    else
2 h  ]* \/ ^( Y( V5 c) G        % Add all the individuals with rank i into the population.
+ Z) k- Y* C4 W, [        f(previous_index + 1 : current_index, :) = ...
* u1 _; i. d$ z% z            sorted_chromosome(previous_index + 1 : current_index, :);; z+ U4 F! D& K, \1 S
        return;
7 t% k8 x7 L# y    end
; B+ ~" N, J4 n- z    % Get the index for the last added individual.
+ y: J/ {1 @! R4 Z' A* D' o    previous_index = current_index;
$ T, p+ X& _( F- _0 T1 iend
5 b/ P* l/ q8 d- A, k* B0 x  i) }& {7 k2 ?

0 {9 Z  j: o) Y- }: U( I, e⑦自定义评价函数(我选用的ZDT1函数)
8 |/ W& ?1 ?  y2 }1 o4 X9 N( Z2 |6 l0 r& R9 d6 L8 ^& F5 d3 [
function f = evaluate_objective(x, M, V)
! t1 |* m' e+ N- R. of = [];+ L: y  E0 ?8 w7 L
f(1) = x(1);
8 |/ c4 {1 Z1 ]# T/ \g = 1;
1 x, U) j7 @9 ^% g5 i# L* A7 f* W* Csum = 0;
' W% `7 G# F1 |; @6 q- @% e) Nfor i = 1:V
! g; q! n( ?6 _) d    sum = sum + x(i);
) _  _5 K" W9 d0 ?: F$ Send
3 {) f, D. i% ysum = sum + 9*(sum / (V-1));
0 `$ F3 D( n7 `+ Og = g + sum;8 W& @+ n( R+ v% P9 o7 U* O5 z
f(2) = g * (1 - sqrt(x(1) / g));, @  k6 _; G5 U: C
end( X2 d) V4 o; s: ]
" a+ e" o+ H4 V% K4 n: P
, _( e1 [5 b$ m% N" g# C
500个种群运行500代的结果: 9 W' \: V, A, \* I" [; w, K9 d
& l5 C* G+ h+ Q+ Z
6 U9 ?% _0 d; L  `  J
4 z- A3 ^7 o+ A7 a1 c) y
  C$ I0 W3 o/ w5 d: g  Q
( b  y* G4 K6 n6 B/ r4 R+ L' z1 s
6 Q9 x! g8 L& y* Z; P+ Z

该用户从未签到

2#
发表于 2020-5-20 13:09 | 只看该作者
NSGA2算法MATLAB
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-8-24 07:24 , Processed in 0.140625 second(s), 26 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表