找回密码
 注册
关于网站域名变更的通知
查看: 401|回复: 1
打印 上一主题 下一主题

NSGA2算法MATLAB

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2020-5-20 10:18 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
那个NSGA2的算法不具有普遍性,下面参考课国外的课题小组的代码重新修改了内部冗余内容,使之能够自定义优化函数。
1 ^) X- M3 }' ^# C8 h9 }
/ ^; Q9 I6 I. w( n" J- L7 E- O* c: c& W2 ~+ d7 n" [" s
NSGA2的过程为:
! d; r" d5 Y% A% f+ w7 P6 C8 B2 t2 [
1、随机产生一个初始父代Po,在此基础上采用二元锦标赛选择、交叉和变异操作产生子代Qo, Po 和Qo群体规模均为N2 ~# A- u; ?, @+ L' U: ^

' G6 D- g2 w+ H+ A2、将Pt和Qt并入到Rt中(初始时t=0),对Rt进行快速非支配解排序,构造其所有不同等级的非支配解集F1、F2……..# j( h+ S1 I" E. W
9 V# q0 F: D9 I/ B3 v( _
3、按照需要计算Fi中所有个体的拥挤距离,并根据拥挤比较运算符构造Pt+1,直至Pt+1规模为N,图中的Fi为F3
1 [! C! Q: ]0 [8 Z2 x4 D( }3 H) ?
5 B& k/ S5 i  Q1 {下面是完整版的代码:' e- I6 k1 ^* ]( l& b2 s( {) i# L
3 d+ ^/ ^* L# Y3 ]  X
①nsga2-optimization.m
7 p, E6 D3 T) F% S' ?
4 _* w+ Z; l1 d/ z/ E) Ufunction nsga_2_optimization7 G! k1 N7 p' D3 s
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%' s# ]4 m- Y- g2 y1 d1 s
%此处可以更改
- P: ?! h% X* L# F%更多机器学习内容请访问omegaxyz.com9 M9 n, {( X+ Z( T$ e" z
pop = 500; %种群数量3 D( V! H$ o0 p+ U, l% v# b1 ?
gen = 500; %迭代次数9 m/ }8 p% a+ }# k  Z
M = 2; %目标数量- x, x: w$ \1 C+ D
V = 30; %维度" L. l. i$ w9 I1 k
min_range = zeros(1, V); %下界
* I) }4 D2 ~, j0 ]max_range = ones(1,V); %上界0 U& T$ E" I& a$ ]9 {* E: z
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
* @- R8 v5 h# U/ W& Cchromosome = initialize_variables(pop, M, V, min_range, max_range);; {5 Y6 U, A+ Z+ s
chromosome = non_domination_sort_mod(chromosome, M, V);) ?+ A/ O* h0 p  P; d
5 g6 S+ I5 I, B- j
for i = 1 : gen
/ h9 N( w7 {1 [6 ?7 F/ \% c+ _    pool = round(pop/2);
( R% ~' _- c: V# \; }    tour = 2;
4 P6 h3 F9 ]0 P3 F; W- A- r/ j1 {    parent_chromosome = tournament_selection(chromosome, pool, tour);
4 K2 A0 j$ q1 e) w# L  j- X    mu = 20;
5 a% E  H% b/ y    mum = 20;
2 M( M& [* p/ Y& Q) ?7 M* }3 b9 N" |    offspring_chromosome = genetic_operator(parent_chromosome,M, V, mu, mum, min_range, max_range);
) P# ?  \; d7 _8 ~  U. S  G    [main_pop,~] = size(chromosome);" f2 q, P) e' W) r1 f7 D' k0 v5 G
    [offspring_pop,~] = size(offspring_chromosome);
0 W' C6 d0 R) j    clear temp
0 ^- t0 R% Y$ K7 W! ^/ G7 h+ T    intermediate_chromosome(1:main_pop,:) = chromosome;
+ ~. T8 r8 y5 a9 c2 ~, w* W+ m. Q    intermediate_chromosome(main_pop + 1 : main_pop + offspring_pop,1 : M+V) = offspring_chromosome;# m) Q6 F2 ~. P. s% n
    intermediate_chromosome = non_domination_sort_mod(intermediate_chromosome, M, V);1 {# ]3 X3 {, R* C/ q: ]% `% b
    chromosome = replace_chromosome(intermediate_chromosome, M, V, pop);
1 q/ X, z! i5 ], H9 B* S6 m    if ~mod(i,100)
) O1 C8 a0 f. Z" V" i. U        clc;/ t" T) A- B3 C; I9 Z0 b9 ]# \& K
        fprintf('%d generations completed\n',i);
1 t  d& o& m  M& }: h) [    end! u9 I* [8 f; M2 t0 z8 f; |
end
# J- [8 t4 G! j9 U6 F# }, {- p
# f1 ]* X# j" Zif M == 2+ l+ c) S0 h, U5 W) R5 ~1 [
    plot(chromosome(:,V + 1),chromosome(:,V + 2),'*');  P3 o+ K, A, k' R3 t
    xlabel('f_1'); ylabel('f_2');
9 }5 E! g" o9 m  H    title('Pareto Optimal Front');% _) |! l* D7 {
elseif M == 3
2 w  d6 J, g1 ~) R9 V& q    plot3(chromosome(:,V + 1),chromosome(:,V + 2),chromosome(:,V + 3),'*');9 n+ C1 Y) j1 A
    xlabel('f_1'); ylabel('f_2'); zlabel('f_3');
+ t* v% A% c# n7 H    title('Pareto Optimal SuRFace');( y. ~# K5 C) \6 _" I& E
end8 @4 i- K: v% p8 k3 ?) V/ i: T
- i; [( N" |+ B& c% O: g9 n7 c

4 a, l0 p5 V4 Q+ s' D: r. b②initialize_variables.m
- B; m5 p- ^$ U" Z. S% p% F. l+ x" H. j
function f = initialize_variables(N, M, V, min_range, max_range)/ `# z) e3 t/ ]
min = min_range;
( q  m# I5 U& k6 w6 p5 d8 ^+ Xmax = max_range;
+ d7 ?: G, s& S2 zK = M + V;
" V- C) p. U# M0 p! Gfor i = 1 : N8 _9 q& K( c; W+ E( g
    for j = 1 : V
" o7 Y0 y) [  V        f(i,j) = min(j) + (max(j) - min(j))*rand(1);+ e0 a! s8 i' Y% d5 L7 L/ X
    end
& I* i# t- j+ o9 ~# \# g    f(i,V + 1: K) = evaluate_objective(f(i,:), M, V);
0 `3 S2 `' K/ x! Aend3 j9 c0 ^1 }% n2 J
( N  N& V  w' }# f% s* g
5 d% {% N$ g, J# r2 Z( W2 l+ H
③non_domination_sort_mod.m; ]% g' |! X$ D+ i% S
: l. _" O0 ^1 W' @
function f = non_domination_sort_mod(x, M, V)
2 H) m8 O+ J2 ~/ W* c  f[N, ~] = size(x);: j' U0 E4 c/ T7 u
clear m5 Z# K& H! h' s4 E) x8 O
front = 1;
2 q( s1 ]; K8 k4 g2 nF(front).f = [];# n/ f4 }3 f$ r4 O6 F5 j
individual = [];6 g; {2 @* T# _* O7 e, L( P
9 ?1 v8 Y# u% R- b
for i = 1 : N4 f! z, h) g, @9 }0 Y
    individual(i).n = 0;3 `7 h" Q+ {9 W
    individual(i).p = [];
* J9 C9 ?7 G2 ^& {  p- m    for j = 1 : N
: B: [8 S; E7 j5 ?; ~        dom_less = 0;
  u9 Z7 d- y, Z% C; D        dom_equal = 0;) L" ^8 a4 f! j4 z5 k+ z5 q0 U  c
        dom_more = 0;9 l) Y1 @5 _+ T, M
        for k = 1 : M# @7 ~: @# K) K( f7 ^7 c1 F+ K4 z, E) p% R
            if (x(i,V + k) < x(j,V + k))
1 K$ p, M! V- g+ z9 ^4 w# E3 w                dom_less = dom_less + 1;
& l3 k# U- D$ z6 f# s6 `            elseif (x(i,V + k) == x(j,V + k))0 Q0 U/ N$ g$ k' Z* d1 S# c/ }
                dom_equal = dom_equal + 1;
/ N. T4 [' M& f/ z            else
7 j7 F0 K6 y9 @% R7 M+ y, Y                dom_more = dom_more + 1;
( o  I' [' d, `. h& N            end
" _! v' F9 h, h  ~        end
/ C2 G) I+ F- b; V$ F. v1 d  o        if dom_less == 0 && dom_equal ~= M3 c6 \! V/ e. s( R2 L$ |" M
            individual(i).n = individual(i).n + 1;+ f$ E3 Q5 }9 h3 f! R" ^( l# G" @' u
        elseif dom_more == 0 && dom_equal ~= M6 w: z. s) c6 |1 l) P. t$ ^' A' {1 z' \
            individual(i).p = [individual(i).p j];5 o7 E( s4 M3 U
        end7 ^' \7 \( O9 Y: H& Q6 u  f
    end   
# l. E' \* L  X+ A& Y3 T    if individual(i).n == 0
7 K! V# ~3 D) N        x(i,M + V + 1) = 1;
- }$ ~) i3 b% ^* o! t7 z        F(front).f = [F(front).f i];3 F8 A# R" ?" _: g% m2 F' q) t
    end# M3 k1 C& ^$ q7 ~6 [, ?
end9 N4 A/ `2 o2 @' o- W& |

$ f7 S. _0 x2 C& l* ~* Z8 M! A+ Vwhile ~isempty(F(front).f)
7 W& `( y8 F/ B2 q0 ~8 P   Q = [];' [. |. E" P  S5 `; S# ~, V
   for i = 1 : length(F(front).f)
/ Y; y/ ~5 R7 |9 Q2 x       if ~isempty(individual(F(front).f(i)).p)/ b3 v; b' `! r7 l$ b
            for j = 1 : length(individual(F(front).f(i)).p)$ p. O/ [3 d$ Y3 v+ ~  i) A
                individual(individual(F(front).f(i)).p(j)).n = ...! ]5 t& b' k0 O& y
                    individual(individual(F(front).f(i)).p(j)).n - 1;) s6 {4 n  u! y, j$ ?
                if individual(individual(F(front).f(i)).p(j)).n == 0
' p& L" s. m, [/ y* h* S                    x(individual(F(front).f(i)).p(j),M + V + 1) = ...
) M: h2 U$ N" ]: ]- I% e& R  g! N& ]                        front + 1;" r6 X9 f  ]/ B1 \
                    Q = [Q individual(F(front).f(i)).p(j)];9 ]0 X" U, {* u
                end+ X  }% F( P# J- o
            end
$ \) r' |( b/ n7 X- ]" @( H8 n8 p  J       end
) }5 N' d5 I. J; u1 u9 h6 @* a   end
2 i( k7 E& R, x- k# G   front =  front + 1;& o4 f* d/ P3 e# d5 g
   F(front).f = Q;
) Y: T3 z& ]$ ^$ m: Uend. T7 Q1 h8 {, K
2 k- s0 k8 j' c% V
[temp,index_of_fronts] = sort(x(:,M + V + 1));9 ~2 W+ y( Y2 h  v, s) b" S: z
for i = 1 : length(index_of_fronts)
5 n; U. l4 F5 k7 ]! ~  L    sorted_based_on_front(i,:) = x(index_of_fronts(i),:);
7 ]& s4 H/ D' y2 i8 ^) d8 Send1 N3 C% A3 c; f2 |' o4 S0 W
current_index = 0;
$ z/ a# s3 o& P7 m; s; t7 t
0 _: z9 h- v+ {2 m) c2 O%% Crowding distance" E) \8 s; `& J+ |7 V0 }
" ?& Y! g: J, a" w3 t" G
for front = 1 : (length(F) - 1)
* u) _* k& U4 r- V0 M    distance = 0;
+ O6 T- @0 |) \    y = [];4 ?. ]- @$ p: K" X2 U* e) ^
    previous_index = current_index + 1;
( w" ]% J6 p. V$ I    for i = 1 : length(F(front).f)
# L- R. X8 e9 L9 b! n* F! m        y(i,:) = sorted_based_on_front(current_index + i,:);
8 L% D; O6 Q- d' V" G- k1 {    end4 `0 Y4 |( j& b; J4 M. k5 M
    current_index = current_index + i;
$ d) w2 d+ `5 D    sorted_based_on_objective = [];
( O; o; i* o8 c" A# m0 u4 E$ K, d    for i = 1 : M
$ k% u0 M7 f. I6 n        [sorted_based_on_objective, index_of_objectives] = ..., s5 a$ p4 f! q0 G9 i
            sort(y(:,V + i));
! y7 o7 u$ V" M        sorted_based_on_objective = [];5 d# u" F4 W9 Q" V6 g5 R2 e+ Q- T) I
        for j = 1 : length(index_of_objectives)0 |% F/ M# e  Y* ?( N$ p
            sorted_based_on_objective(j,:) = y(index_of_objectives(j),:);
1 r) w. Q5 o/ e2 q        end
4 B  O+ ~" t3 a$ w; I0 c        f_max = ...
; y( I" w0 J5 v6 M! i  {8 A! x            sorted_based_on_objective(length(index_of_objectives), V + i);1 b' _; Q  q, |5 k
        f_min = sorted_based_on_objective(1, V + i);
. r- w8 d( C) p" E( w        y(index_of_objectives(length(index_of_objectives)),M + V + 1 + i)...* K! C4 p6 _; }) R! M" O; F
            = Inf;+ |( F- M: J! s7 X9 S& n# P- E* z
        y(index_of_objectives(1),M + V + 1 + i) = Inf;2 m, `* h: l! F
         for j = 2 : length(index_of_objectives) - 1; @3 K6 \& l! C+ |4 |
            next_obj  = sorted_based_on_objective(j + 1,V + i);
, U( E  U* A8 h( B7 D+ e0 z; j            previous_obj  = sorted_based_on_objective(j - 1,V + i);
0 C  X+ q4 f( _( @7 H* c8 i            if (f_max - f_min == 0)
, ^8 P3 d, ?8 Z                y(index_of_objectives(j),M + V + 1 + i) = Inf;
! L. p$ g5 o9 L( z% y" {2 n0 f            else0 o3 H! E3 O: i
                y(index_of_objectives(j),M + V + 1 + i) = ...  H, s# Y1 a( w1 m0 A
                     (next_obj - previous_obj)/(f_max - f_min);
$ w) ?- H. m6 P, o. f            end) s' p0 j0 N: p0 W6 \" F5 t' i( d
         end
& D# @" Y! E3 [, H# c' z$ p0 l    end
$ m0 `5 T% R0 R; z7 Z% y" Q    distance = [];: e- c8 d! `0 I7 U5 J
    distance(:,1) = zeros(length(F(front).f),1);
/ m+ e: t2 G" u7 s4 C5 P+ X7 d) h    for i = 1 : M
/ R, p; _- `2 E% ?        distance(:,1) = distance(:,1) + y(:,M + V + 1 + i);$ J* D. d! g) ]9 a# d, B, x
    end- c' G/ L: y0 E, ]
    y(:,M + V + 2) = distance;
; I% G1 K- R5 `: v: G    y = y(:,1 : M + V + 2);
% ~* S! q% a" u6 ?: V3 z    z(previous_index:current_index,:) = y;
! k4 C0 ]7 y, e- |7 [end
: `6 {3 d& E1 m, U) ^! `9 X( Vf = z();
* [& c1 @4 g" v2 p4 Y5 E  k# K3 V& \$ `$ n9 ^0 Q( z3 ?. Z+ G/ x

- b! }. U6 [2 T④tournament_selection.m2 L) j9 G) U# f
& Y9 }3 z5 t6 O6 x9 T% @
function f = tournament_selection(chromosome, pool_size, tour_size)" P- I7 Z1 ^  ~4 ?2 f2 \
[pop, variables] = size(chromosome);; E  Z+ Z& Y% n6 h# u5 w
rank = variables - 1;7 ?- {0 F( _# ?/ ^/ o( [0 }
distance = variables;  A! y+ Y& q! o: X, A
for i = 1 : pool_size
' Y$ ~/ a  s- l6 i0 y$ U2 N8 e# w( s    for j = 1 : tour_size
. q" m9 C1 N/ _5 Y' w# c        candidate(j) = round(pop*rand(1));& G5 w, o3 c! E1 ^1 Q; u
        if candidate(j) == 0
, h4 m( z! ]+ K            candidate(j) = 1;, r8 n6 {0 Y- Q' k0 W
        end
( n( P. T1 a2 [# D1 d% C        if j > 1
; `: J1 [% ?4 B$ g# M0 P- _            while ~isempty(find(candidate(1 : j - 1) == candidate(j)))9 v6 Z8 |" {; L, D- \& ^
                candidate(j) = round(pop*rand(1));
# \1 ^: W2 l' |8 u                if candidate(j) == 0
% ]5 _& L5 g: Z! r1 S                    candidate(j) = 1;
7 n( z8 M4 P: b                end! E/ k/ g3 G% a9 D
            end
* v" q! M$ G% |4 `* C8 k* Q        end
* R1 K" W8 J- r    end
+ _  e0 P) {" Z$ t    for j = 1 : tour_size$ I$ ^6 Z" p1 T7 `' {
        c_obj_rank(j) = chromosome(candidate(j),rank);
9 R" x7 x, k- f6 i0 j7 O' s        c_obj_distance(j) = chromosome(candidate(j),distance);
9 y6 b1 |8 L# }6 B- \! N    end/ V' m1 J2 u3 M. z6 ~: I4 N% O
    min_candidate = .../ V: Q9 w9 a9 {% t& z, }; Q& O; [
        find(c_obj_rank == min(c_obj_rank));
! D: y7 b% y  b; ~) W7 T- }& _    if length(min_candidate) ~= 1
5 C: \1 g. f4 x1 }8 X) K        max_candidate = ...! I  H" _( s  W* K' p
        find(c_obj_distance(min_candidate) == max(c_obj_distance(min_candidate)));
, P. `) \  h. k6 i) n4 W; ?, c        if length(max_candidate) ~= 11 J) [1 b4 i1 Q& T4 D2 a
            max_candidate = max_candidate(1);
: \) `5 {5 _4 ^# }        end
- T$ E$ j2 {, [" x5 d& R+ _        f(i,:) = chromosome(candidate(min_candidate(max_candidate)),:);
; f/ [0 a3 j- k7 d! O    else$ O2 w- O+ e4 `' {! E% J0 O
        f(i,:) = chromosome(candidate(min_candidate(1)),:);
+ e  E& _2 z" I; n' k0 v& Q    end
7 t& Y. s0 ~* l* d' a/ Xend
2 _! N/ L1 K: d( n; O2 U) k
' _4 d$ C( m8 o  v; p) ^- v+ A3 b5 |1 ?. p0 Z- i- y
⑤genetic_operator.m: @, f) G/ O! L; F' D: M8 v: C
) |, z$ s0 P" L6 z4 l. c- V2 p
function f  = genetic_operator(parent_chromosome, M, V, mu, mum, l_limit, u_limit)
7 T8 N  u; @' R& u" P[N,m] = size(parent_chromosome);: ~1 ?9 k! A" X  P- v4 F
/ u" W  g# K! F3 M. C  G9 X
clear m
( Q, I& S! q& G& b; s7 wp = 1;
3 f" c1 G" ?9 @. H# Kwas_crossover = 0;! }( a1 D9 F6 t3 y
was_mutation = 0;* {& Y4 f( G$ f8 o# x* Z5 ], W* [
1 t- _6 k  B* K: S9 P& L5 A5 [
9 ?: N/ A/ l, E+ U# G3 {9 @
for i = 1 : N2 S1 `5 I9 \4 i2 L! q+ X& ^
    % With 90 % probability perform crossover
7 D/ L8 ?3 l  ]# u$ C    if rand(1) < 0.9$ K- B9 a( x+ w& }- L5 B
        % Initialize the children to be null vector.% m& g  L/ D3 w: K4 n/ V- I
        child_1 = [];7 U7 Z' Y5 O+ j' m, j  w
        child_2 = [];
" G& X5 R& B9 I        % Select the first parent: i0 O& w4 D( f) [! ~
        parent_1 = round(N*rand(1));$ Y; O! a  ^" ^
        if parent_1 < 1
4 \4 w: A7 K9 \2 B7 K; n  l            parent_1 = 1;# @2 `7 j) u6 M1 @
        end
$ B# C9 P8 _4 A6 n2 {        % Select the second parent
- L  I6 V1 D% y, ?* v% x" s2 C        parent_2 = round(N*rand(1));1 W6 g/ [6 r  f4 ?- f" o
        if parent_2 < 1: N- b, D4 G8 z: m) W" y/ h
            parent_2 = 1;
  M" J  J9 L$ z4 y        end& ^: E2 F" i  C( s" O8 Z7 }
        % Make sure both the parents are not the same.
' B% J, j% w/ z& A- G2 F. ]  M        while isequal(parent_chromosome(parent_1,:),parent_chromosome(parent_2,:))
3 q. J. T; Y- x' v0 R, f1 F            parent_2 = round(N*rand(1));) M$ ~2 f1 ~% r' l3 S: k- A
            if parent_2 < 1
0 T0 r5 Q& {; D7 ~% \2 ^% H                parent_2 = 1;' \2 ^$ T/ ]) h0 {; H
            end
4 y/ Q( @' }  a4 [! n9 b        end( P, o# {: c+ g# V& _: ^
        % Get the chromosome information for each randomnly selected
# z, z% e% j  }3 U        % parents
! P0 [6 v- F, ]! j" j; j3 H2 Z: Z        parent_1 = parent_chromosome(parent_1,:);
; }/ A9 J0 `+ x$ C        parent_2 = parent_chromosome(parent_2,:);% E& L- `" @8 f& G) m( G
        % Perform corssover for each decision variable in the chromosome.$ X# |* q0 J5 X# q" Q- d9 p
        for j = 1 : V
6 m: R. K' A9 E; k4 l            % SBX (Simulated Binary Crossover).7 }2 [( G9 A/ `3 g9 d4 Y
            % For more information about SBX refer the enclosed pdf file.
& G* R5 V9 O4 J9 `; {) p) _6 c            % Generate a random number" U) ?8 c4 b: _2 z1 B  n8 _9 R- ~
            u(j) = rand(1);
) U6 }. ?; g3 z& K9 G5 m5 _! b0 m' D            if u(j) <= 0.5" @# a' t; Z1 P" I$ E0 b" X
                bq(j) = (2*u(j))^(1/(mu+1));% n1 n. _+ R  F* D9 c0 b7 |
            else% V! e. ?6 n. x6 J! s- K
                bq(j) = (1/(2*(1 - u(j))))^(1/(mu+1));
" }' S  x; r3 X! o4 U            end
: E1 q, {0 B+ M7 m- E: x% x            % Generate the jth element of first child
6 P6 J5 P$ H4 k- {            child_1(j) = ...
1 @; F$ ^/ ~# B( P  \- F- K8 f' G                0.5*(((1 + bq(j))*parent_1(j)) + (1 - bq(j))*parent_2(j));6 \3 p# B5 X4 q( e: Z, a
            % Generate the jth element of second child
6 e) f5 e; O; X3 s6 }0 i            child_2(j) = ...4 X, a2 a5 v% Z% O2 f
                0.5*(((1 - bq(j))*parent_1(j)) + (1 + bq(j))*parent_2(j));  A9 e7 C) Y- i4 t
            % Make sure that the generated element is within the specified! @. N: m9 x9 \% r  c- V
            % decision space else set it to the appropriate extrema.+ c( }5 j" @7 |) l
            if child_1(j) > u_limit(j)
) M# T0 j  w, d/ M7 x* ]3 _9 B5 U, X* Y                child_1(j) = u_limit(j);8 d0 l' \+ F5 ]! s. T$ k: v' |/ J
            elseif child_1(j) < l_limit(j)
* y$ u! z, _) G$ X1 i8 y' U                child_1(j) = l_limit(j);6 u) s% Q+ `8 ]! K$ s; Y, L
            end" ~/ \5 e% c3 ^' ~
            if child_2(j) > u_limit(j)
% A' ]" E% j/ f2 A3 d  e                child_2(j) = u_limit(j);
% D) m8 B: P, q! H, |4 a5 t& L# m            elseif child_2(j) < l_limit(j)4 J6 I7 k( m% V$ I- e( T& [/ [
                child_2(j) = l_limit(j);" ]- X* N9 J+ i; y6 F$ [
            end& u" i2 U0 L9 d$ W
        end& V, L5 D  g, O( x+ P/ o' B
        child_1(:,V + 1: M + V) = evaluate_objective(child_1, M, V);+ k4 W8 j, v7 ~2 }$ h0 [2 x
        child_2(:,V + 1: M + V) = evaluate_objective(child_2, M, V);
- z3 }/ v7 x! w% |; {$ J6 Y# k        was_crossover = 1;5 c: `4 Q& }5 ?9 l5 b! g- Y8 d
        was_mutation = 0;
: r5 Z  G4 K% M& G$ E, I    % With 10 % probability perform mutation. Mutation is based on) {  v' t& h7 h9 i
    % polynomial mutation.
* q) o; y' T* @- K    else: J3 r+ Q7 W4 {
        % Select at random the parent.6 A# q- P3 W1 a$ d8 n1 h
        parent_3 = round(N*rand(1));  m- H1 n% H+ K, f
        if parent_3 < 1$ E; E8 A- E# ^1 r% y% n: n
            parent_3 = 1;
( R5 z3 @' k0 @! `$ X9 J+ A        end
% q! o2 T" I, ]: d- ]2 t2 X        % Get the chromosome information for the randomnly selected parent.8 K/ z* A( x) t$ b& N; d# r9 |8 q
        child_3 = parent_chromosome(parent_3,:);
0 ]! M6 f1 ^# e        % Perform mutation on eact element of the selected parent.. h1 _9 n+ H) S' E
        for j = 1 : V
3 d3 G+ g; B3 m9 Z" |4 Y6 L7 N  w6 U           r(j) = rand(1);
) G2 O, x% ~' U* ?           if r(j) < 0.5- \3 R# a+ t( l2 S: X- l5 L
               delta(j) = (2*r(j))^(1/(mum+1)) - 1;
& k' o) s: i- g# y           else; w4 `8 Q; }  C' ~
               delta(j) = 1 - (2*(1 - r(j)))^(1/(mum+1));8 |5 f9 q" L9 f" G8 {) ?3 `
           end+ c: V  ?6 c9 Y: h  m& e3 z
           % Generate the corresponding child element.. A0 O0 I: I3 D& F7 S" k& S
           child_3(j) = child_3(j) + delta(j);
( T* A4 i; A; o5 t: G+ Z) F  d           % Make sure that the generated element is within the decision
$ O3 D* `  w2 z4 `5 O" x! W3 U) ^- }           % space.
1 ?9 O' V) B- P6 O& I3 y# K$ [           if child_3(j) > u_limit(j)3 n8 d' G  s2 Y, {% [
               child_3(j) = u_limit(j);
/ G- f$ _* \* @: [/ e           elseif child_3(j) < l_limit(j)
: k4 D- c$ |/ j               child_3(j) = l_limit(j);
2 m% t  c. Q: M$ {5 X           end) e; M! X( G! C& k- x$ X9 m
        end/ w; w  U# \/ S4 q
        child_3(:,V + 1: M + V) = evaluate_objective(child_3, M, V);
# L6 I0 B( I- [; ]0 c. {4 d- O) t        % Set the mutation flag
0 J- Q  m# J6 a3 O$ a        was_mutation = 1;7 M1 F! Q) A! f7 H
        was_crossover = 0;
/ \& v" A! `; Z8 o, a& Q    end% d/ i1 t! i& y9 u/ R, ^2 Q
    if was_crossover* r& j, H: n2 q8 T" I
        child(p,:) = child_1;: r1 O5 L) p# U& a- K, q6 j
        child(p+1,:) = child_2;3 o  f$ A0 E5 I2 e2 q2 `
        was_cossover = 0;3 V3 n. S% v& H  o; y; H8 U
        p = p + 2;
) ?* L: o1 V+ ?    elseif was_mutation
; e$ j2 O& }# b( T. M+ Z        child(p,:) = child_3(1,1 : M + V);
! \* d, S7 u5 s* W& f% `8 J        was_mutation = 0;
2 _( R6 ]& K' u/ R4 B        p = p + 1;
2 ^1 O/ V/ q& @# _3 e! f+ I    end. g4 b7 d- w" i) `$ g9 [
end
1 C, v1 |* B% e9 E! uf = child;- v2 I. F+ t# @# O# b: i
, W+ i+ u! l9 `: n
. G: C% p7 f4 H5 Y
⑥replace_chromosome.m
( s8 j! c  W4 R, l- B& D( i/ b2 l. x% [8 A2 s
function f  = replace_chromosome(intermediate_chromosome, M, V,pop)
' m$ z/ L; G; M8 t% J0 K+ _2 Z. l
) H' w( H4 H6 w  }0 d1 n
[N, m] = size(intermediate_chromosome);# }3 K0 X' C# E6 u
4 \. X2 k- a/ r6 n2 d3 O
% Get the index for the population sort based on the rank
1 N- b* \+ E" H) Z3 l[temp,index] = sort(intermediate_chromosome(:,M + V + 1));' b, g+ f6 [, b

: P$ {6 {. }, x% A: t3 O$ J( y0 Zclear temp m
9 I, g5 L' B7 m1 }) v+ D4 K, `( B. ~9 Z# m! ~3 I- ^
% Now sort the individuals based on the index7 R8 x4 j2 [7 O! f
for i = 1 : N
5 P$ o4 s1 n5 b& c8 ~/ ]/ m3 Z7 J    sorted_chromosome(i,:) = intermediate_chromosome(index(i),:);5 q% x: q* a" \- T; ]
end
. k! ~. W8 r( b3 p8 ~; P. F0 [
' c; i6 }5 ~) O% Find the maximum rank in the current population0 k* _  `4 H& ~1 G* E
max_rank = max(intermediate_chromosome(:,M + V + 1));" r6 M2 F2 ?. b2 ]. n
' p% g  r6 K+ i6 L
% Start adding each front based on rank and crowing distance until the" V. E. a. f0 [& g  ?% I- U
% whole population is filled.: {* C7 Q$ d7 E4 [) `# t/ K( V
previous_index = 0;& o3 c& e! O! y" R) D6 S+ o" J
for i = 1 : max_rank" r2 }  I+ u5 m1 _+ S- o: o
    % Get the index for current rank i.e the last the last element in the$ w- G0 D% j& H2 a
    % sorted_chromosome with rank i. 8 G9 V; p9 x" f# w% O6 }$ ]
    current_index = max(find(sorted_chromosome(:,M + V + 1) == i));
) L# I. y% |  h4 v7 m    % Check to see if the population is filled if all the individuals with; h3 w  s; u/ e7 J# o1 C. `* K  k
    % rank i is added to the population.
9 c0 y1 n: u, J5 M0 y7 G- R    if current_index > pop
% Z$ P9 `" A! s3 U        % If so then find the number of individuals with in with current
* M8 M# [" q, {+ A& e4 ?6 k        % rank i.  b6 F: I; Q3 _0 W% J5 ^
        remaining = pop - previous_index;
' g! G8 s/ M3 B( s        % Get information about the individuals in the current rank i.
# I% }* z/ _3 \        temp_pop = ...
+ O# e& G0 }: r# q( p            sorted_chromosome(previous_index + 1 : current_index, :);
) K8 a6 h7 w. n4 i4 C( v* V        % Sort the individuals with rank i in the descending order based on
4 _: ^! U: r! c        % the crowding distance.
' |( k3 L4 j7 d' p! W7 O6 X0 l( ~        [temp_sort,temp_sort_index] = ...2 [5 d# A% o/ Y; J+ m
            sort(temp_pop(:, M + V + 2),'descend');  I0 D( q& G2 l" M
        % Start filling individuals into the population in descending order# Z5 o+ G7 \! S/ ~' i
        % until the population is filled.0 `0 t, i8 E- m. l
        for j = 1 : remaining* ?/ b1 h/ a& @& w$ B% v2 e
            f(previous_index + j,:) = temp_pop(temp_sort_index(j),:);! B) L* ^: |7 F, F
        end  N2 w+ ^( J7 D
        return;" ]/ {. U, x9 _1 l
    elseif current_index < pop$ G4 S+ x* u8 f) h9 s1 l0 ]. z
        % Add all the individuals with rank i into the population.
/ }# f0 H4 g0 E! p" U; w: u1 ]/ p* h        f(previous_index + 1 : current_index, :) = ...
/ `' f; m$ m# `* ]6 }            sorted_chromosome(previous_index + 1 : current_index, :);! C# @/ r% S1 o1 i% {& d. z
    else9 s% Z0 R; N2 L9 H) ?
        % Add all the individuals with rank i into the population.& Q, L/ p* s7 f
        f(previous_index + 1 : current_index, :) = ...% q3 G: D7 |) a5 t
            sorted_chromosome(previous_index + 1 : current_index, :);
5 y2 R0 p+ B0 y9 s  k        return;
. ~: s3 r( T3 F& T' U. F& \9 J    end7 k$ |+ n% z" w& G
    % Get the index for the last added individual./ A8 J9 R( |  s+ B1 ?% _) q
    previous_index = current_index;
4 E8 R& J" M3 _3 Oend
7 e/ Y/ C) i4 V: C, D8 \' Z. s* `: I' w$ A/ ]" ~
- T1 Z; A3 L* x/ F5 C
⑦自定义评价函数(我选用的ZDT1函数)
& O6 r; q+ K! [- e% J$ a- v5 o8 a6 p7 Z/ v2 m  i8 }
function f = evaluate_objective(x, M, V)) `/ t% ]: u0 O. k) m# T2 K
f = [];
' d* |$ P1 _1 @6 Mf(1) = x(1);# ], I$ K2 J! ?" c+ m. G+ ]
g = 1;
2 D! D' t! F% ^, ?# X) \sum = 0;
4 r& P0 T! `5 l) Z. t9 xfor i = 1:V
/ ]. a$ f2 p- o5 V) z+ M" y  V    sum = sum + x(i);
/ p' M' n8 a+ r; t4 y7 C$ T1 }end
, f3 j' a. |% ^7 g/ a6 Vsum = sum + 9*(sum / (V-1));, d9 C4 y1 A+ m
g = g + sum;
9 h/ F# I  G1 N# @f(2) = g * (1 - sqrt(x(1) / g));
- ?/ p8 j8 P( qend
: h/ ~) w: k  O0 b7 A. w; Q6 g
$ E1 o* y2 h4 E) y  s# k8 x3 W. D0 q$ U* A3 N) a5 @5 p. Z
500个种群运行500代的结果:
+ f' ~5 Q  A: K ( w  v- L' [3 @0 y( b1 e- O0 ^

) G4 u4 G- g8 `6 h) t1 s0 S8 b  ]/ Y+ P  y

( b, v( O& [0 t' e+ N4 T; f$ I8 q, V( ]) H5 m* E9 {" V6 {. f

# ~( _( p' O3 {

该用户从未签到

2#
发表于 2020-5-20 13:09 | 只看该作者
NSGA2算法MATLAB
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-7-23 20:10 , Processed in 0.140625 second(s), 26 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表