找回密码
 注册
关于网站域名变更的通知
查看: 415|回复: 1
打印 上一主题 下一主题

NSGA2算法MATLAB

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2020-5-20 10:18 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
那个NSGA2的算法不具有普遍性,下面参考课国外的课题小组的代码重新修改了内部冗余内容,使之能够自定义优化函数。
# ^! J# K* `1 a3 ]2 B& D% C
1 V9 ]5 M  F4 r2 C3 D1 C( G) I: M" R" U$ O7 o) {$ i
NSGA2的过程为:
7 T  p& C1 x% q! X, t0 ~- p/ w8 F4 k5 J* |, j
1、随机产生一个初始父代Po,在此基础上采用二元锦标赛选择、交叉和变异操作产生子代Qo, Po 和Qo群体规模均为N
) [% h" A- o- m7 l+ ?0 R1 _5 ~" T5 Z) w! K+ q6 X: f) r
2、将Pt和Qt并入到Rt中(初始时t=0),对Rt进行快速非支配解排序,构造其所有不同等级的非支配解集F1、F2……..
6 y8 L' D* A9 L5 l1 _
* z/ p, ]6 ^7 @$ k/ q' I8 \3、按照需要计算Fi中所有个体的拥挤距离,并根据拥挤比较运算符构造Pt+1,直至Pt+1规模为N,图中的Fi为F3/ C: x, P- T- M( X9 o0 d& w* s8 _# T
' x% t' L4 Q# L  _2 p, \3 f
下面是完整版的代码:
2 }- Q6 q/ {( W* b% a9 V% _, M2 t! v# f  o$ w# X* E% o
①nsga2-optimization.m' G/ h( |) W- S; Q2 u3 O: \

* Q2 d( M2 v; y- Y0 @function nsga_2_optimization$ \& t; Z, e+ {& _' {6 g; D6 [! n
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
* a1 S! F  Z; }' G0 C! X%此处可以更改
, U- |. y* a( ?9 X5 A5 R4 J8 M%更多机器学习内容请访问omegaxyz.com
& H2 I5 A# m( q: y% E. \pop = 500; %种群数量
+ j4 M& h- l3 M: Bgen = 500; %迭代次数
4 e9 d1 o6 q% i: I  }* VM = 2; %目标数量/ r9 F& U6 V3 b# B) {
V = 30; %维度
# [+ J  f& O3 Bmin_range = zeros(1, V); %下界
) G. C( F0 Q. I- K: N+ h8 Mmax_range = ones(1,V); %上界
, \- p$ h" ~+ w& d) L%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%! X8 V0 w" ]3 }1 O4 U
chromosome = initialize_variables(pop, M, V, min_range, max_range);6 B" j7 K) ?  ]* e) o4 A$ h% x/ F
chromosome = non_domination_sort_mod(chromosome, M, V);
( Y. K9 x* x, j- [5 a, i
- ~3 d& q) Z' A5 O; A# @for i = 1 : gen1 t/ C: Z* d7 H4 u
    pool = round(pop/2);( Z  B4 k% d7 k: O; t; s; Y; Q, z
    tour = 2;1 _) B6 o4 e4 A
    parent_chromosome = tournament_selection(chromosome, pool, tour);' T& ^4 J7 \( `" @2 V+ R
    mu = 20;
+ |! ?) u$ o8 L6 g3 a& ~    mum = 20;
; g4 N3 Z, D/ S7 Y" _+ t6 q    offspring_chromosome = genetic_operator(parent_chromosome,M, V, mu, mum, min_range, max_range);
- l5 m# k8 s) H8 P1 J1 l    [main_pop,~] = size(chromosome);" s: S0 S5 `" d* K2 b
    [offspring_pop,~] = size(offspring_chromosome);
# H+ X0 @" |4 P    clear temp. s* K" o- ^: Y* r5 L( }" g
    intermediate_chromosome(1:main_pop,:) = chromosome;
1 `7 F8 j) d( F# p    intermediate_chromosome(main_pop + 1 : main_pop + offspring_pop,1 : M+V) = offspring_chromosome;
) l. ^7 P" l9 T    intermediate_chromosome = non_domination_sort_mod(intermediate_chromosome, M, V);- s, ^0 `7 V. D( H- B
    chromosome = replace_chromosome(intermediate_chromosome, M, V, pop);
* F; m+ J5 z* c- w, ?0 x    if ~mod(i,100)5 o$ v5 O+ z$ Y+ E# ]$ |% a' \+ c
        clc;) D0 L5 g: C6 B& U- M* N" L
        fprintf('%d generations completed\n',i);& L& Y: A" U% t, S" K4 h
    end
2 X; c  R# r% ^- m1 w7 Yend# P  A* l: [9 x2 n  b- s4 y
! T# s- u! @, H8 o0 g
if M == 2
/ u# r3 y5 B! M: y2 R    plot(chromosome(:,V + 1),chromosome(:,V + 2),'*');
& m3 |7 k/ C  C, N/ t: Q) f+ E+ f    xlabel('f_1'); ylabel('f_2');: m+ {! j1 a% }" T# W
    title('Pareto Optimal Front');
7 ~5 k! n  W) @5 w8 z5 felseif M == 33 I0 _0 G% d4 J7 b' x8 @3 v7 b1 K
    plot3(chromosome(:,V + 1),chromosome(:,V + 2),chromosome(:,V + 3),'*');
# r3 x. p5 R% v* f3 s    xlabel('f_1'); ylabel('f_2'); zlabel('f_3');  t* C# _4 H! H5 J
    title('Pareto Optimal SuRFace');
# g3 ^7 L! a  a7 cend
) X0 X* X; H: `  F" Z( ]" K8 B$ T: }, G0 S  x8 F+ D1 R' C7 @
* w; S# o9 x: y$ {, F' \
②initialize_variables.m7 ]  i1 \" c; z" e1 C: p) Y

8 E' b0 e# |! Sfunction f = initialize_variables(N, M, V, min_range, max_range)
2 R  V; {5 q0 ]) D0 W7 X' K4 z* Omin = min_range;6 g  v2 l+ F/ {0 B
max = max_range;
* P# ^9 p: u0 W) qK = M + V;; m  I/ _7 }; I, I7 _6 f
for i = 1 : N
3 Z/ F# P; F. v/ `& g    for j = 1 : V
+ w/ k  v4 ?- C! V9 P        f(i,j) = min(j) + (max(j) - min(j))*rand(1);
, f' Y$ ]$ c% Z7 W3 ]/ k    end9 M. i  {' C' \- w4 j  ?  I9 H$ J
    f(i,V + 1: K) = evaluate_objective(f(i,:), M, V);! |& M: T: a8 W4 N
end6 W8 W5 n+ W" U' h

# L( o1 y' J1 Z8 Q" l  t/ Y+ F8 u# R9 N" @* ?* r
③non_domination_sort_mod.m
6 ~, v; ~: `) I/ ]% z* _
* d6 v) ]- i. y. |1 xfunction f = non_domination_sort_mod(x, M, V); D. c/ o; R* V% B# R$ g: C
[N, ~] = size(x);8 a) x  a2 F8 f! I( W+ f; m5 ~
clear m1 g. \9 V" P: N& v" M8 I& p  C% l
front = 1;
7 e( H$ |0 ?. @" HF(front).f = [];
& f4 T) d; f: t- [individual = [];
5 M- Z5 E. c$ u' b5 x2 V7 w
9 [* }' a6 t$ U8 P" w0 z9 B. Sfor i = 1 : N
* I; W& X! E( `    individual(i).n = 0;
% r) q% R6 O, i$ l5 o    individual(i).p = [];
/ ^( Z- ~! E: a8 A, C; U    for j = 1 : N
* h5 L& @% w4 A/ I        dom_less = 0;4 H0 B/ v3 s( `9 ~' s- d( b
        dom_equal = 0;
- L4 b$ V$ i; V- ?% N# c! L        dom_more = 0;4 B+ u8 Q+ b7 W2 B& f3 b4 n2 J
        for k = 1 : M
/ `. [" D1 f4 U( Z            if (x(i,V + k) < x(j,V + k))  d5 x  a: W" F7 F" [& t
                dom_less = dom_less + 1;, P2 j$ S4 q. m
            elseif (x(i,V + k) == x(j,V + k))& @7 _, g) _9 S" t& u
                dom_equal = dom_equal + 1;* V. c% g5 j* P. I# Q9 v
            else1 D6 y# v5 |% h3 J  Q5 y6 W2 |9 ^8 a9 W4 l
                dom_more = dom_more + 1;
* f/ x' @8 `' c, O* U            end# I0 I: D5 J  ?' a6 s3 _
        end  [2 F7 z) E/ p0 J2 n) h
        if dom_less == 0 && dom_equal ~= M! R& ^5 E6 e$ r5 t. c) |
            individual(i).n = individual(i).n + 1;6 e  Y  e* Y4 c% n/ _$ S
        elseif dom_more == 0 && dom_equal ~= M/ b9 T) |+ H5 v- T! P
            individual(i).p = [individual(i).p j];( h* `6 I7 V6 f8 V  F6 ]
        end
8 a, @2 T; h1 O' V    end   
9 m7 a8 ^* @3 f    if individual(i).n == 0# ?, C3 Y$ Q- C' A- I
        x(i,M + V + 1) = 1;
* _1 v/ T& x4 P" f        F(front).f = [F(front).f i];
% @' `+ X% c" n9 U) q    end
% @+ R2 _. l0 h4 bend1 Y5 q8 v0 U9 t! O( h+ c
2 s; D! \( n/ V% V( B  ]% i4 W
while ~isempty(F(front).f)$ a  l2 g4 R) h
   Q = [];5 {7 p/ P8 a) {0 K8 i4 g$ f8 I
   for i = 1 : length(F(front).f). m% I$ R+ e3 q$ z) g0 J" d
       if ~isempty(individual(F(front).f(i)).p)2 f' i# ^' t4 M: E
            for j = 1 : length(individual(F(front).f(i)).p)
# S3 J- O! _' U5 Y                individual(individual(F(front).f(i)).p(j)).n = ...+ g# T4 @. s( X+ q
                    individual(individual(F(front).f(i)).p(j)).n - 1;
* `- I: u/ C* }9 c                if individual(individual(F(front).f(i)).p(j)).n == 0
5 e5 K4 d* ]/ k7 k                    x(individual(F(front).f(i)).p(j),M + V + 1) = ...
6 O; S6 p9 s9 t                        front + 1;! n6 F" C- Q9 C) i
                    Q = [Q individual(F(front).f(i)).p(j)];
' h5 n' c7 M0 q! Y4 @( ^6 F                end
, Q# D, U8 i; u/ H            end7 x- h+ J: ]2 {! T5 M( q3 Y
       end
$ S# a, T" i) T/ H4 Z( o$ M" O   end6 W5 h% ]" G3 S# r& e. N( y
   front =  front + 1;
: o% K" z2 d. T& i( a   F(front).f = Q;) p& h8 t7 c$ A! ?! {
end: w9 b* P+ L& O) d. k2 O. M! N

( l6 g5 v- o, P2 _& X- O( w+ F) K[temp,index_of_fronts] = sort(x(:,M + V + 1));
$ ]( Q/ Y: F$ ^' Ifor i = 1 : length(index_of_fronts)0 z! y5 N! O0 x0 \- c( k" p
    sorted_based_on_front(i,:) = x(index_of_fronts(i),:);  J% V6 X- g' i$ I) t8 T
end
& L- ^& R* H4 F2 Rcurrent_index = 0;- q# L' B; C' ]" y6 C" q; I' }

% W. \* W& n0 Y# ~. ]/ N9 g%% Crowding distance
1 K' t- M/ D+ y1 u" C! q1 N9 i, B* o- T$ Y8 r
for front = 1 : (length(F) - 1)& ?7 T& Y, O4 Y
    distance = 0;- r! v# y6 a1 |, ^9 [5 \' H
    y = [];
( L, O* {  A6 p' Z    previous_index = current_index + 1;  S( \( b( g8 r3 k
    for i = 1 : length(F(front).f)
& V7 W$ n, C. b" X        y(i,:) = sorted_based_on_front(current_index + i,:);
; @: ?# P' l4 I& |4 p9 ?    end
7 s1 V! P! Y( V9 h2 b6 o6 ]2 x    current_index = current_index + i;
% \/ `6 Q* v9 I& n: J2 T! _0 H9 B    sorted_based_on_objective = [];& K+ }0 ?1 z/ Z* x' m
    for i = 1 : M
6 |& X! p* I4 v$ N        [sorted_based_on_objective, index_of_objectives] = ...1 J4 L, ?( R9 d: W  _) {$ T
            sort(y(:,V + i));
# K. L7 I# [5 _0 B9 E% w- H        sorted_based_on_objective = [];
3 ^; W1 F) b5 O        for j = 1 : length(index_of_objectives)8 _# {! b# j+ a
            sorted_based_on_objective(j,:) = y(index_of_objectives(j),:);6 |+ T5 t4 v' Y2 G
        end
& j& O+ }% Q, t0 u        f_max = ...
/ s" ~8 y' [, `            sorted_based_on_objective(length(index_of_objectives), V + i);& L1 E4 @8 b/ e6 w" \/ q
        f_min = sorted_based_on_objective(1, V + i);! S9 w1 \) k  D# z4 l
        y(index_of_objectives(length(index_of_objectives)),M + V + 1 + i)..." N: R( U( S8 [. w1 x  {
            = Inf;3 \& d. O( y" ~
        y(index_of_objectives(1),M + V + 1 + i) = Inf;. \8 ~# k( P' V
         for j = 2 : length(index_of_objectives) - 12 x% k/ [3 A* Y8 @
            next_obj  = sorted_based_on_objective(j + 1,V + i);
) j3 ^; p( n0 v4 x& T            previous_obj  = sorted_based_on_objective(j - 1,V + i);9 L% E! r) r/ ^2 A; O
            if (f_max - f_min == 0). U3 [! |& p5 y; T
                y(index_of_objectives(j),M + V + 1 + i) = Inf;+ f5 i* k/ q, |6 w+ [* Z
            else
5 l( \* b2 _1 o5 @; J! h                y(index_of_objectives(j),M + V + 1 + i) = ...
+ e6 ~, d' j3 j* P                     (next_obj - previous_obj)/(f_max - f_min);
" ?0 X% ]6 [" F0 N. N            end7 p; x6 [" c9 O7 P
         end
6 f$ U$ E) g7 m  |    end7 u; R6 y1 e+ q) s# ~
    distance = [];1 K9 q" d3 @- Y& w! V* i
    distance(:,1) = zeros(length(F(front).f),1);3 k% B2 e5 l  X& T1 q, n3 ~: G1 b
    for i = 1 : M; D9 f2 `7 u/ Y6 x9 c
        distance(:,1) = distance(:,1) + y(:,M + V + 1 + i);
3 K# D  e) w) u8 h7 v5 F- b7 Y    end
3 W' v# D3 L  |& z: w    y(:,M + V + 2) = distance;
" ^+ Y. v+ k7 B    y = y(:,1 : M + V + 2);5 p8 G# p; a6 ]
    z(previous_index:current_index,:) = y;
0 Y) c, j* J: V* Gend8 \: r0 {8 I# X6 ~
f = z();
9 g3 ^2 f% i* v2 I3 u
+ Z) N6 C# a! t& r* i" i
. j. y; A; |8 q( W% b. T! e0 Z9 u& d& b& _④tournament_selection.m
: \6 ^4 H" Q1 o
5 v- a; V7 l; _- V3 v' Yfunction f = tournament_selection(chromosome, pool_size, tour_size)
* N( x6 M. w* h$ H! r[pop, variables] = size(chromosome);2 K7 {4 O! t5 V6 T2 g
rank = variables - 1;
9 z/ u6 ?2 B  y/ x5 a: K1 Cdistance = variables;
* P( N$ f* \4 X% x- Y: ~6 sfor i = 1 : pool_size+ S. Q# z) k" w9 p
    for j = 1 : tour_size2 _0 y5 d) ~% s* u$ o! Q
        candidate(j) = round(pop*rand(1));. @9 ]; M3 f# T; v" L3 E3 k" a
        if candidate(j) == 0
& N2 f! @1 d: N; E: y) K            candidate(j) = 1;. L: }" d/ Z4 m* H6 Q
        end( L- g( M3 w& Z7 Z# o
        if j > 1
9 O! f+ b8 X  S            while ~isempty(find(candidate(1 : j - 1) == candidate(j)))
' N0 S4 G5 r, W5 q                candidate(j) = round(pop*rand(1));( j9 N( D' y# N4 f6 a- a
                if candidate(j) == 0
' c- [* a& C% B" s  u" y1 R% \* p1 p1 x                    candidate(j) = 1;% q) n) [" l0 Q. S4 j& e7 x8 U
                end
. D( L# N0 z' [0 m+ Q: @            end% [! i. m6 Q+ r& {& F3 d# i
        end
; o; E6 U" S* [9 K4 [* P: s) ~7 C6 K+ q    end  F' I* f( G/ j! V2 o
    for j = 1 : tour_size$ W3 ]3 p- @# R- V- w. D% `
        c_obj_rank(j) = chromosome(candidate(j),rank);
- C' M8 V- P5 g$ v) S6 m0 V0 O        c_obj_distance(j) = chromosome(candidate(j),distance);
; {0 G" G8 B8 a$ v" H    end
' x% o( d- G8 N5 {  N% f    min_candidate = ...
5 J" f( G3 b9 O. C9 P        find(c_obj_rank == min(c_obj_rank));9 k3 E1 q. m" F& ~
    if length(min_candidate) ~= 1
2 Z+ _# V8 j: i. c$ a4 Y, q; a        max_candidate = ...- X, K6 x! [; f
        find(c_obj_distance(min_candidate) == max(c_obj_distance(min_candidate)));0 e) r/ X6 o9 a6 `& L  D
        if length(max_candidate) ~= 1
# x" q- q; V5 K! Y" G6 u" n% D* L            max_candidate = max_candidate(1);6 M2 M- E* \  c
        end. S1 b9 B3 ^% \1 c
        f(i,:) = chromosome(candidate(min_candidate(max_candidate)),:);* o1 K8 _/ Y! }6 }4 ?5 \, e4 J! P& d- e
    else
8 U3 G1 U2 ]8 H        f(i,:) = chromosome(candidate(min_candidate(1)),:);
+ Q1 P# T) D' U, H! T    end
3 j; {# V. ?3 ?4 c- p2 Nend
, K/ z6 q5 A# Y, c* T8 Q- j1 `0 ?! C; t: r. E  e( e

" S5 z1 I- `" s9 e( h⑤genetic_operator.m
* G9 E. j6 O- D
( Y2 o4 z% g$ `9 b$ ~" Ufunction f  = genetic_operator(parent_chromosome, M, V, mu, mum, l_limit, u_limit)
; g" F9 V7 o2 `* q; H[N,m] = size(parent_chromosome);& F" e( B* u  V+ {- z
5 j- g$ x) }8 `6 y3 g/ i' }
clear m
* ~6 P0 \0 b3 o2 B$ i7 l$ [3 W  Zp = 1;( K; [5 R4 l1 ^; p5 d3 q$ h
was_crossover = 0;5 V( O. i/ }6 I# s; ?' I- G. Q
was_mutation = 0;
8 r1 u7 z, ]$ b3 v4 q, P' Z$ s/ T: M; _. E; |3 n% K* p
! r  N/ i4 V- h6 [* s
for i = 1 : N
2 Z8 X# s& l9 e% A' T' b% M8 ~    % With 90 % probability perform crossover7 y$ b9 [% _- v; M1 a' `
    if rand(1) < 0.9+ T  |. J% h! o$ L
        % Initialize the children to be null vector.
7 V; _9 w5 N9 t  ]2 E9 u        child_1 = [];
, y& c8 P. I2 S0 v        child_2 = [];5 B4 p/ A6 [2 B/ [: ^- R6 ]& ~
        % Select the first parent
; t' r: q" h$ p% N        parent_1 = round(N*rand(1));0 @) g! q( D  ~: F
        if parent_1 < 1
/ G7 a/ q4 ?, t2 e0 r. Q            parent_1 = 1;
) m: s- o7 i  ?, b# R. z! p5 Z        end. [, m4 Y0 U5 W* U1 ]. Q7 [
        % Select the second parent
- `$ Q! P9 @+ [/ i6 h" b" @; h        parent_2 = round(N*rand(1));
$ i3 g; Q$ P* C: H0 \2 N. P. e        if parent_2 < 1! o6 X. A/ [( n) w4 a
            parent_2 = 1;9 a, l* R' O$ T* V1 Y
        end
8 c# F. h7 ~5 }0 b$ o        % Make sure both the parents are not the same. ' g7 }  W  ~4 U( [6 N
        while isequal(parent_chromosome(parent_1,:),parent_chromosome(parent_2,:)): j, X& P" y5 |. \& l# ^
            parent_2 = round(N*rand(1));0 K1 l' o7 y8 h% e6 \1 ?: p
            if parent_2 < 1
; Q# G9 s  c+ m% ?9 ]                parent_2 = 1;
1 D# S, ^4 A& A! c4 ?5 f            end
5 l/ y$ j; c+ l. _        end
" E" u$ q& s  g8 I  n7 Z        % Get the chromosome information for each randomnly selected  n5 I4 b& w# n8 ^+ x9 Y" c
        % parents6 G+ r( C  \( X, K9 C
        parent_1 = parent_chromosome(parent_1,:);4 q5 o/ R1 l* m( @6 e. W
        parent_2 = parent_chromosome(parent_2,:);
) ~8 @4 m! C. \/ }  R* m        % Perform corssover for each decision variable in the chromosome.: U6 o' q, t0 c5 m" d# I
        for j = 1 : V7 U5 Q' k: |+ g. q* j  f% A  n2 N/ ?
            % SBX (Simulated Binary Crossover).- f% z0 a5 [) C
            % For more information about SBX refer the enclosed pdf file.- A9 D& F2 \5 ~" i* P' o
            % Generate a random number
% b" {! N. q7 U. b$ w            u(j) = rand(1);( w0 |& Q5 _' v/ `- {
            if u(j) <= 0.5& X+ h5 s& w5 U# r- a/ u# r9 C
                bq(j) = (2*u(j))^(1/(mu+1));6 Z) l: B4 u7 w# _2 _! U2 U5 H4 E
            else
+ `( V  ]# b/ H6 o( f1 `6 Q                bq(j) = (1/(2*(1 - u(j))))^(1/(mu+1));
  {5 L) P( g+ }# v6 i! \6 G" c& Q0 ^            end2 M9 k6 ~; C) S3 v+ R
            % Generate the jth element of first child8 t0 Z+ D) l) s/ ^) }
            child_1(j) = ...& C* I; k$ i4 v% _, l) k/ P1 r! J6 W
                0.5*(((1 + bq(j))*parent_1(j)) + (1 - bq(j))*parent_2(j));
4 X3 f8 |: I% C! Y            % Generate the jth element of second child
) A7 c$ S: _5 W            child_2(j) = ...
- N2 m% S% l* _5 |- D8 g7 k                0.5*(((1 - bq(j))*parent_1(j)) + (1 + bq(j))*parent_2(j));
$ U, ~, Q2 Q( A            % Make sure that the generated element is within the specified
( _1 Z4 Z/ c8 v5 K/ _- W9 n& g2 Q            % decision space else set it to the appropriate extrema.% N6 I+ U# X8 g: h/ I  E3 q
            if child_1(j) > u_limit(j)
, p+ p, l. s, f/ h4 @8 F                child_1(j) = u_limit(j);
# Z- [. z9 c$ L3 q9 C# \( r6 i            elseif child_1(j) < l_limit(j)
8 c$ i- F! q& ?2 G                child_1(j) = l_limit(j);
0 i1 n( }& [" N2 ?            end3 f0 \7 C3 J' `% x, l' [! y  _0 |
            if child_2(j) > u_limit(j)* M. A. {, @6 T+ |- f
                child_2(j) = u_limit(j);" U. E" K6 M2 o; ^3 s
            elseif child_2(j) < l_limit(j)
6 o# Q( b; l5 p% N2 j                child_2(j) = l_limit(j);: O! K: e9 x" i5 W- s- o& V
            end/ T( }) a1 I2 F& j& w& W# t
        end
5 u* |* ~2 ~3 k. P; x        child_1(:,V + 1: M + V) = evaluate_objective(child_1, M, V);8 Q+ @4 X. a- o
        child_2(:,V + 1: M + V) = evaluate_objective(child_2, M, V);
# ], @2 O; ~1 u( o        was_crossover = 1;; G) n/ |( Q2 j
        was_mutation = 0;
) b% ?- t& {! y  O5 S" |    % With 10 % probability perform mutation. Mutation is based on
! s$ \3 l6 \% S, N: O  R* K    % polynomial mutation.
9 g  r8 r3 I2 j    else
) L1 J# C9 n! H1 h, \# g* ?        % Select at random the parent.
! p# v0 N* t; o        parent_3 = round(N*rand(1));
7 f# f* o4 B* O, v9 |" Q% _) N        if parent_3 < 1
" _% c/ @# i  d9 w( c. P+ w: N- |            parent_3 = 1;
0 W' U/ |2 h$ ]! i' f        end( b0 m! I$ q8 H  }1 W
        % Get the chromosome information for the randomnly selected parent.- A: T# s7 Z1 ]9 i4 E* ]& l
        child_3 = parent_chromosome(parent_3,:);3 @- j: B8 i5 D! T$ _& ]& w( a7 g9 O
        % Perform mutation on eact element of the selected parent.
3 w8 _# h9 u# d  b; o! A        for j = 1 : V
5 y3 e. S5 R7 Q# Q5 x           r(j) = rand(1);
3 N8 S& R# y* _5 i, O) R" \3 R           if r(j) < 0.5
& ~0 Y  l1 Z8 h- f8 f2 n" r               delta(j) = (2*r(j))^(1/(mum+1)) - 1;
/ g0 w; a; h" k: `' R5 i$ M7 ?: B           else
8 K! A  C. N; y7 U& q; ^               delta(j) = 1 - (2*(1 - r(j)))^(1/(mum+1));* h* C# l4 ~% @7 m' B  K" t
           end
! D6 m5 m9 {2 Z2 p           % Generate the corresponding child element.
8 i6 \! }; ?  |           child_3(j) = child_3(j) + delta(j);- z0 ?5 L8 L4 t8 G& \" G* p  r
           % Make sure that the generated element is within the decision
$ g9 Z( i: }: a' O8 s6 [           % space.! _1 B0 H/ g& q# r4 F) b5 j
           if child_3(j) > u_limit(j)
; O) r5 L5 j1 k               child_3(j) = u_limit(j);) E9 e5 y. b0 g# H
           elseif child_3(j) < l_limit(j)  c" H- u  I4 F* [/ j
               child_3(j) = l_limit(j);
9 s2 u3 I+ G( A2 _7 k! v  a! K           end) e7 y& K6 y. n8 ]# `6 K
        end
( m# o* s' D; U& h% i6 Q        child_3(:,V + 1: M + V) = evaluate_objective(child_3, M, V);
, D$ |& A$ Y! |$ M# F9 M% f& N        % Set the mutation flag
0 Y- A& h/ r, t/ {5 ~! _! |        was_mutation = 1;3 Z: H) U, m2 ?: {% S1 h
        was_crossover = 0;; B" Q' b, c3 {# H- k) M
    end9 s( O  U' d  b+ Z+ {  u
    if was_crossover; h4 `6 P( j# U2 S, ?. C2 h
        child(p,:) = child_1;$ a4 E3 \$ ~3 Y$ x+ M0 g! K; x
        child(p+1,:) = child_2;; ~' s+ m% o1 T2 A
        was_cossover = 0;' o! I: q% S: l& j7 s7 y
        p = p + 2;. H: I0 z& S) J1 [; h) N
    elseif was_mutation6 w9 p: T: V2 `+ P
        child(p,:) = child_3(1,1 : M + V);
* G6 k- e  p/ r        was_mutation = 0;) R% b- B( y1 Y. P; v) x4 ~
        p = p + 1;1 ]" L( ]) }. I2 u4 m7 \
    end3 y3 A2 \$ W, p) Q/ P: |
end
- Z* |% j0 n$ Y9 f3 l( ~f = child;
5 |  r" d  T9 [  `  k+ z7 [
! W8 D) A# x" A0 V2 r
* N1 p0 @( H  H⑥replace_chromosome.m
: Q0 ]3 A! U3 J7 @' V* g& p- m1 s3 b+ _1 f1 m# K: [6 }
function f  = replace_chromosome(intermediate_chromosome, M, V,pop)
" M/ A- w6 s0 e3 Y# q2 ^2 m, S# W2 b8 u: \8 X. K' E" [4 ]" L# v

' c. v- G& |1 _: G[N, m] = size(intermediate_chromosome);) f1 N* w# U, B  l& D
! [' Z7 [( _; r/ x+ T; k5 N
% Get the index for the population sort based on the rank
) ]5 [, m7 D3 g% D% q) O2 m[temp,index] = sort(intermediate_chromosome(:,M + V + 1));
* S8 B3 G9 v* `( U  A: w
. I! _( x6 k1 Z$ R' ^clear temp m$ i5 j$ z- x) H% E* h+ B

0 n2 L% J" [3 |+ S* x7 x* r% Now sort the individuals based on the index
! R0 K; F" C; q! j- tfor i = 1 : N& X5 |7 }3 W0 F: ^
    sorted_chromosome(i,:) = intermediate_chromosome(index(i),:);: i# |7 ~* H) y' {) w, S: h( D
end
& N& S" a' N; g! \8 x! q* J  t* R( x: [% f" h5 C$ F
% Find the maximum rank in the current population! `6 G2 m) X6 O. J9 c
max_rank = max(intermediate_chromosome(:,M + V + 1));
+ U$ q0 j  ?6 Q& c# t( M8 X$ k. B! C1 ^0 g  F# l3 \9 K+ o
% Start adding each front based on rank and crowing distance until the  Y1 h; k$ v' Z8 J; d2 R2 F
% whole population is filled.
4 K: B- d" o+ P3 o/ c5 k) i8 l# ~) vprevious_index = 0;
( |) P. U" o" d, e) ffor i = 1 : max_rank( T, J5 S9 u. o5 k& \5 @& T
    % Get the index for current rank i.e the last the last element in the
' X" C! b# @+ h+ K- p( T- ?    % sorted_chromosome with rank i. / d6 i8 n/ K+ K0 c) V- G4 m% w
    current_index = max(find(sorted_chromosome(:,M + V + 1) == i));) r7 C6 ^2 V: s1 s) b/ x
    % Check to see if the population is filled if all the individuals with
4 i! p, U7 X- T+ f' D    % rank i is added to the population.
7 |, z! M9 Y. x    if current_index > pop7 `2 {) z) N) ~* E
        % If so then find the number of individuals with in with current
; Y0 O0 j& ~. Z. C        % rank i.' h. Y6 e3 k& F+ u% A
        remaining = pop - previous_index;
* q% W8 K, B( ~        % Get information about the individuals in the current rank i.
5 I! ?# A! A6 F. b, N  S* }        temp_pop = ...! ^9 A# X  A1 E
            sorted_chromosome(previous_index + 1 : current_index, :);
/ n4 W. Y8 l' J. A" f        % Sort the individuals with rank i in the descending order based on1 M" X6 g/ N3 s& z6 a& J
        % the crowding distance.  x) G% G; }3 L' m# _
        [temp_sort,temp_sort_index] = ...
8 w3 ~# L8 A  a) K9 c            sort(temp_pop(:, M + V + 2),'descend');
. H, s* D& q& p: {# {        % Start filling individuals into the population in descending order
5 X; s- G" u0 v: y; T. n2 g! l        % until the population is filled.; K/ R4 {( F  p7 U3 m
        for j = 1 : remaining
; k: t5 Z  C$ b( p- W5 {0 U            f(previous_index + j,:) = temp_pop(temp_sort_index(j),:);
2 F6 ?% p) y) a5 |        end
* g8 b* }7 }3 S        return;
3 A3 |" B% F* _, O% O4 q    elseif current_index < pop
& q5 G3 H3 o+ g5 \: f0 e( h        % Add all the individuals with rank i into the population.
# L) L# p- y, ]! v) O        f(previous_index + 1 : current_index, :) = ...
- k/ q# {+ G0 ~2 i% I& C9 s! b            sorted_chromosome(previous_index + 1 : current_index, :);3 J- i0 Y' E% E4 ^2 A% O3 l" `
    else
" b' \7 N* q6 R        % Add all the individuals with rank i into the population.. E2 r0 i" Y: o0 F1 o
        f(previous_index + 1 : current_index, :) = ...8 e- m! J8 i6 `6 w! K7 p. ~) g
            sorted_chromosome(previous_index + 1 : current_index, :);6 p8 b. u. W9 Q. A) i0 |% ^
        return;- S4 D: a2 d) \7 A9 x7 n) \' e
    end
  S: |& P! C  ~* ~    % Get the index for the last added individual.
0 U( Z0 ?7 |% u! K    previous_index = current_index;, B1 j* O- z4 l
end# Z$ r+ `9 x. D) @

) N; V6 a5 C5 Y8 }) R# _( k; ]! @* `. Z3 [9 \
⑦自定义评价函数(我选用的ZDT1函数)
$ ~# \; d- j7 L* v/ q9 k/ m% ~
- g  `5 v- A( ~- _- }: s& nfunction f = evaluate_objective(x, M, V)
( B8 x+ H( c6 U* o5 I. ]& C9 \f = [];& d* ]; I) K+ q& q0 m: @9 A: a
f(1) = x(1);/ A5 k# m7 b  G
g = 1;! o! z' z& Z& \( _) s- x
sum = 0;" D0 q: \, E3 `7 f8 X  O0 m" B- C
for i = 1:V; V3 t: m- r% W3 F- ]0 l" j" r
    sum = sum + x(i);) s5 [9 A. P' ^) P3 s  Y* i9 B
end
1 E6 Z* U& x. I4 \0 Tsum = sum + 9*(sum / (V-1));% M7 {5 h- H+ z8 X8 m
g = g + sum;1 ~& t0 M$ ]( S( z7 U* O' t7 z
f(2) = g * (1 - sqrt(x(1) / g));
3 _; S6 e; t- q$ f% o3 ^: g! Mend) \; K0 b" \$ l3 V: U( d: B% ]! v

0 k$ G" }) d4 B8 C5 |3 B3 O- D( ]. Z* D% y: J
500个种群运行500代的结果: * c% b8 L) q  q# u6 t+ {

  f: b2 C7 G4 T' ~; ], B. a/ ]* [$ F5 U) ?# h( K3 ?8 t

1 R1 ]4 B7 T0 j4 I
' k# f# a, T( ~7 U2 F& ^4 F2 ^
2 J; [; ?) L( p; D4 A! w7 L" }* P8 }0 i- @7 ]

该用户从未签到

2#
发表于 2020-5-20 13:09 | 只看该作者
NSGA2算法MATLAB
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-11-5 23:53 , Processed in 0.171875 second(s), 26 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表