|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
那个NSGA2的算法不具有普遍性,下面参考课国外的课题小组的代码重新修改了内部冗余内容,使之能够自定义优化函数。 ) c4 ^7 x7 |/ L* E( w6 `$ n) I( f
7 w6 U% i& `( u
2 G. N1 G% C; u1 e# F9 H; h! LNSGA2的过程为:
) M/ U7 i: H" T( J) h, k0 w) T# D
; u$ b2 R! t( M: [1、随机产生一个初始父代Po,在此基础上采用二元锦标赛选择、交叉和变异操作产生子代Qo, Po 和Qo群体规模均为N0 X5 K* S6 y, u# j1 H% w5 _! Q& L
- v* J% {! A. w1 H0 S [2、将Pt和Qt并入到Rt中(初始时t=0),对Rt进行快速非支配解排序,构造其所有不同等级的非支配解集F1、F2……..
' f. R' R O4 F2 n8 R! \
, b l O! \+ N, q1 U" s% o9 ~3、按照需要计算Fi中所有个体的拥挤距离,并根据拥挤比较运算符构造Pt+1,直至Pt+1规模为N,图中的Fi为F3! @6 D2 ~: L* x) e+ G/ @% [0 p
6 A& t: {) U+ x4 Y下面是完整版的代码:
$ _& s( H3 D* r& q0 `8 [5 u" c( K4 l6 t7 u
①nsga2-optimization.m" I% Y& {5 u, ^4 Q8 d6 e
1 x+ Z# [" B6 C% zfunction nsga_2_optimization l5 L7 V. [6 j) _7 M; R, h
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
& C/ a& \" r, W& V%此处可以更改
3 {# y5 w, N6 B3 r+ G) m) w4 y%更多机器学习内容请访问omegaxyz.com' s A$ J; F. y2 Y' w& x- V
pop = 500; %种群数量$ p1 ?1 q e& K, c/ K5 P* Y3 j
gen = 500; %迭代次数9 Z M) x/ |' N( R( M
M = 2; %目标数量. ~5 B/ j5 N* v7 i! ?4 g
V = 30; %维度
' @/ I$ u1 c: N+ ]# N* C4 Kmin_range = zeros(1, V); %下界6 M6 X. R: {- _( G( p. A/ ]8 l
max_range = ones(1,V); %上界
1 @6 f, m. m9 T4 U: i/ R. x%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%# @! T+ t& {1 L) E' A
chromosome = initialize_variables(pop, M, V, min_range, max_range);
4 g9 n- ^9 i" H4 `" F- {chromosome = non_domination_sort_mod(chromosome, M, V);
( L9 h Y; P4 P: i3 E
& b0 e3 h4 g, V% u& J- cfor i = 1 : gen2 _1 s2 t9 x0 j0 i6 D& a/ ^% u
pool = round(pop/2);
8 j$ k( c9 E( ~4 H: x' W tour = 2;
9 C6 C- T2 \: |8 \ parent_chromosome = tournament_selection(chromosome, pool, tour);
5 ^8 z/ {0 r' o3 e9 ?9 \, j* [' i mu = 20;" S9 q- s. U) N% E
mum = 20;; T+ r4 t9 R6 {* o" Y$ o, s+ q6 U2 E
offspring_chromosome = genetic_operator(parent_chromosome,M, V, mu, mum, min_range, max_range);
! H1 \1 s' A* ?) v' _: V; g [main_pop,~] = size(chromosome);7 W2 Q8 U2 a1 s$ G- s1 G
[offspring_pop,~] = size(offspring_chromosome);/ O! D$ O5 }/ t. e
clear temp7 O/ I0 h u' R1 @5 h" o
intermediate_chromosome(1:main_pop,:) = chromosome;0 y; K% ?, n/ ^/ M
intermediate_chromosome(main_pop + 1 : main_pop + offspring_pop,1 : M+V) = offspring_chromosome;
: E8 g' ]" e" T9 F6 l intermediate_chromosome = non_domination_sort_mod(intermediate_chromosome, M, V);
3 P, t: Z9 x. v( e. M$ H9 q chromosome = replace_chromosome(intermediate_chromosome, M, V, pop);7 e+ P1 [2 l/ O, @4 M' t0 v
if ~mod(i,100)
) k/ T' d! r7 f9 E/ s0 G clc;
1 x/ q \" }# q/ P/ o fprintf('%d generations completed\n',i);; A* j5 {& Q5 v1 Z6 L
end
2 ]7 y! s9 B' q, r; [/ w4 }end: j" `0 r' d, \; k8 t8 j' P5 m
/ U9 O. d0 Q* j. P" b4 g5 A g
if M == 2* o: K% ?, T' R' X [1 H/ W
plot(chromosome(:,V + 1),chromosome(:,V + 2),'*');( _$ }5 \2 K! C/ S% @+ m
xlabel('f_1'); ylabel('f_2');
& v! Q+ ^( P& _7 x title('Pareto Optimal Front');* o* a4 g( s2 D1 t
elseif M == 3
$ {% |6 V6 L) j( {$ k6 U* X* T plot3(chromosome(:,V + 1),chromosome(:,V + 2),chromosome(:,V + 3),'*');
M& G# |) t' d ^' q* g xlabel('f_1'); ylabel('f_2'); zlabel('f_3');
% t5 n! S: M1 T, W |: H; o title('Pareto Optimal SuRFace');+ o# D) \' [! t
end5 K [9 M$ g" q9 N/ R
& O, V* n$ U H' W" @
2 N# j* k" V& R, [$ r$ N& X. H
②initialize_variables.m
) Q/ @- ^% Q6 r" W/ h7 w6 L; F
5 o- \" O4 a1 J4 P" Ofunction f = initialize_variables(N, M, V, min_range, max_range)5 e, X1 Q" a/ r* b: ]$ R$ s
min = min_range;
5 j! a7 ]) x. M& Q) Cmax = max_range;) w# j- h/ y7 u. K5 C
K = M + V;5 b8 X% O. v! v( `
for i = 1 : N- n/ S7 [; R1 {5 u0 G
for j = 1 : V
$ E2 S5 B- @0 R6 G! e/ [% a# K f(i,j) = min(j) + (max(j) - min(j))*rand(1);
1 |5 Q0 W4 A) I( m. `& r" @0 {3 ` end
$ g2 y7 u) _9 n J6 Y) k' { f(i,V + 1: K) = evaluate_objective(f(i,:), M, V); e4 W" y) F# W9 i( F# i
end
) b' F+ n% q% N* s& B( J% B( d7 I7 t# G7 E9 Z2 h
; u, c0 W! w5 T0 d
③non_domination_sort_mod.m
1 K; v) @* e+ ]7 b. J+ W7 x/ E$ Y4 C/ _# i. p
function f = non_domination_sort_mod(x, M, V)* J6 s5 a* K% {2 f
[N, ~] = size(x);
2 k( E5 v, r! H' S9 g: `clear m
* o+ E: V3 C, P; B5 \front = 1;1 I" Y4 t3 o2 Q! T k
F(front).f = [];, C0 g( L4 i1 o1 [
individual = [];
! Y8 J8 n7 P- |) ~3 H( }0 \0 }( a" O6 B
for i = 1 : N: I+ B; r4 {+ b8 f) y3 E8 A( x
individual(i).n = 0;
9 {+ l8 a5 \) S g: n individual(i).p = [];
2 f/ G+ ~1 w, L c for j = 1 : N
$ _+ ^2 k' |8 T9 o dom_less = 0;1 @. X+ i% E+ u6 F
dom_equal = 0;
* {: v. P& W. i; `/ @' F1 J dom_more = 0;
; z7 t6 d% Q& V. P0 D% |$ { for k = 1 : M0 g# S: L/ t# s* y$ b2 \
if (x(i,V + k) < x(j,V + k))0 h. `; w) B5 n( l
dom_less = dom_less + 1;
$ S$ r% A4 y, ?$ F; v elseif (x(i,V + k) == x(j,V + k))
. \" \% q" y- ~ E1 N) @5 M# H dom_equal = dom_equal + 1;
* a& _0 y% F# ^& m* f# m5 w _% q else9 e! L6 Q0 M- W
dom_more = dom_more + 1;
: L/ b: y% Z. c. b& r3 Q4 I' d3 Q' Q end1 \4 q2 w; l) o+ q
end
$ j8 J; N) E$ o5 z2 W4 w if dom_less == 0 && dom_equal ~= M) Z; h. K0 D* @# g F0 Q
individual(i).n = individual(i).n + 1;
, ~& V! `4 L' X; J' G# d7 k elseif dom_more == 0 && dom_equal ~= M
4 A `7 F" P, m1 b* _) A; r8 } individual(i).p = [individual(i).p j];: s M1 V# M0 K; Z7 d4 V' i
end" [; B' t+ M# Y3 m
end 6 U3 s- f1 g( n
if individual(i).n == 04 V8 d" B1 _$ X( j* b2 D
x(i,M + V + 1) = 1;( m- F1 n- O% q$ h8 v
F(front).f = [F(front).f i];
+ |8 D1 U% c7 Q end) u7 d& _# z+ P$ v% Q, T* x- X; o
end
, w) ]0 d1 i/ Q/ x& Q( ]: [, d+ q$ E1 q, `0 d4 \" Q
while ~isempty(F(front).f)
A! A4 ^5 e( H+ \$ \$ m+ v Q = [];
2 P* m: c M5 `5 i( T# p; r6 V for i = 1 : length(F(front).f)
" X3 l( o/ d: C' P# X if ~isempty(individual(F(front).f(i)).p)
6 m# h2 [9 e& G: D; K* [) B for j = 1 : length(individual(F(front).f(i)).p)2 T6 g7 D1 O' f
individual(individual(F(front).f(i)).p(j)).n = ...
8 H3 ]+ S) g/ _7 e- d8 A individual(individual(F(front).f(i)).p(j)).n - 1;6 e; O7 P7 x; \ f8 C8 A
if individual(individual(F(front).f(i)).p(j)).n == 0
" c6 k3 ^, {. `3 t1 I. t$ G x(individual(F(front).f(i)).p(j),M + V + 1) = ...9 Q; ]6 J) w- n2 H' m
front + 1;: \, V+ r+ J/ a" b R
Q = [Q individual(F(front).f(i)).p(j)];
8 n1 r# N6 a6 p+ w2 {5 ^2 L9 S end
9 u, c! {% H) n end& ?$ H3 V7 a a2 A
end
3 \# {8 V d' K) m* t5 u' } end
6 B$ ^7 W; D5 h, L front = front + 1;
- o6 M% _7 U6 B! r: j$ I7 S! c7 i F(front).f = Q;/ c j" C+ |0 N9 S% F
end3 H0 m" s, C4 m: D/ s3 o. e( y
- h. i1 {& y2 R. ?
[temp,index_of_fronts] = sort(x(:,M + V + 1));
9 w; V8 e; j' R& o7 w' ]for i = 1 : length(index_of_fronts)
; H1 h" f c$ E3 c! h( ]$ ~ sorted_based_on_front(i,:) = x(index_of_fronts(i),:);8 a/ I4 z: ~8 b6 M! }; \" _
end7 T6 c/ g# ~; o! _+ O! ~1 m3 M
current_index = 0;8 G) b, m! Y+ y0 p# d7 @9 m
$ y7 X& h. B* I; f, @" `$ }
%% Crowding distance
% |6 I! h. D# g5 j0 d% j) ?$ O& Z0 V4 r. [$ N1 n
for front = 1 : (length(F) - 1)6 J4 ^3 q# U0 a. ]! a0 P
distance = 0;
0 x1 p5 V, z0 \! J y = [];
* K- i4 m) ]6 |$ J# L0 t" ~ previous_index = current_index + 1;
+ V: ]: Y6 e- y9 Q% I- o for i = 1 : length(F(front).f)/ s/ ?7 |* j, M% _ g8 D0 y; p, J
y(i,:) = sorted_based_on_front(current_index + i,:);; l \$ x7 s/ Y0 ^, n3 T; p
end
9 j1 {$ b' ]9 h9 ]/ m8 v( a current_index = current_index + i;/ ^; h3 E& z8 U a& {+ d( {$ i
sorted_based_on_objective = [];6 C" Y) A9 H. X% ^* a% A. l
for i = 1 : M$ p# M$ A* k0 N5 O
[sorted_based_on_objective, index_of_objectives] = ...
+ y4 c( I" i q/ _. r, h* H sort(y(:,V + i));( q4 n) H5 S8 q! ~
sorted_based_on_objective = [];
2 B8 ?4 R# |5 ^4 ^0 |2 c for j = 1 : length(index_of_objectives): }: m- w9 X8 T* z0 }) R6 D- F3 ^
sorted_based_on_objective(j,:) = y(index_of_objectives(j),:);
) d9 X- ]* g3 t+ [ end. Z! ]& X, s4 Q3 J+ o
f_max = ...! B y8 ?9 o* c4 B# _5 C
sorted_based_on_objective(length(index_of_objectives), V + i);, B$ ^; [8 z0 S3 p
f_min = sorted_based_on_objective(1, V + i);
) ^8 Z7 N* L; O& d y(index_of_objectives(length(index_of_objectives)),M + V + 1 + i)...
1 l' K8 _$ Z) ~/ g' x) e: T3 P = Inf;
, J \( u/ R8 H- y6 m" J) x y(index_of_objectives(1),M + V + 1 + i) = Inf;
0 D! R2 G% h `" ?6 I5 B for j = 2 : length(index_of_objectives) - 12 o$ y7 E& l. v1 B9 J
next_obj = sorted_based_on_objective(j + 1,V + i);
D) d" E* Z# q4 J: N, { previous_obj = sorted_based_on_objective(j - 1,V + i);
7 p' w/ o5 O/ E9 g0 u2 w5 C* I2 T if (f_max - f_min == 0)
1 h& ^% y, B/ _9 s3 T y(index_of_objectives(j),M + V + 1 + i) = Inf;9 ]# y" Y3 b$ p( m A
else
2 A" h. q1 z. _0 r% F y(index_of_objectives(j),M + V + 1 + i) = ...
$ K/ e3 R; M6 L' k! G (next_obj - previous_obj)/(f_max - f_min);7 B" q7 k8 k8 \5 o- y& z6 z
end3 X W) s" X4 v6 v2 [- S! k7 R
end5 q) o$ ?$ p1 C" p
end- A+ I z$ v; P9 o7 G6 v y! d
distance = [];7 K& c' m3 q2 F$ n! k
distance(:,1) = zeros(length(F(front).f),1);
5 V) @0 D) u6 ~2 k for i = 1 : M3 n% X& R. _( w- _; |, n! v
distance(:,1) = distance(:,1) + y(:,M + V + 1 + i);
5 T( Q6 i2 [! b+ v2 n end
& Y8 z3 I+ F) }/ G. W- o( {+ H# h6 P y(:,M + V + 2) = distance;6 e5 P/ _. r+ ?4 z, x
y = y(:,1 : M + V + 2);' }2 Y9 C+ n5 Y/ U9 k
z(previous_index:current_index,:) = y;; _' o5 c* x, F* d6 X
end
9 }4 X! T l9 i$ `1 B: wf = z();( b) e c& t$ u" a5 j% V
: ?7 b5 k3 l- ?: C w3 k% Q f+ N
- i4 H2 E7 H2 ^* k7 d& C( N④tournament_selection.m
% ~: ^; T8 o6 B8 g* p0 Z; x4 i
function f = tournament_selection(chromosome, pool_size, tour_size)/ H6 w8 l8 X4 d( G) f
[pop, variables] = size(chromosome);
2 j- z& O1 V) G8 U5 @8 j2 Zrank = variables - 1;& j/ E- S7 ~, b+ A7 ], w# g
distance = variables;% E; s( z, u& [8 M) K5 ?
for i = 1 : pool_size' w) M1 \) j3 O5 b0 `
for j = 1 : tour_size
! x$ ^+ U R* w" z. U candidate(j) = round(pop*rand(1));
& Q6 q- W/ Y/ _# u if candidate(j) == 0
1 L: q0 o5 V. ^$ T4 ~. H( M candidate(j) = 1;
' r, d- c9 t1 y end- S6 ?" U4 t @) ~) T1 t8 z
if j > 1$ O2 w; J- c, a
while ~isempty(find(candidate(1 : j - 1) == candidate(j)))( _7 T4 z( c' m& I8 ?
candidate(j) = round(pop*rand(1));
. {1 N' h$ d- [3 z: ~) r( f if candidate(j) == 0
Y/ F6 b; A4 d' J8 N* t" ^5 s/ f1 H candidate(j) = 1;
# z" H& ` G+ t3 ?8 i end
6 v0 M1 {; h: {5 l3 A, R: N" W end
) z8 ?( L! u r6 ~ end7 T- ^2 J% `& g
end3 o% y7 U1 B c! v1 B# Y
for j = 1 : tour_size
0 [5 C0 o, E2 _. w/ Q c_obj_rank(j) = chromosome(candidate(j),rank);4 l2 [0 |$ e( u+ ?2 {
c_obj_distance(j) = chromosome(candidate(j),distance);! D; m7 w- Y$ Y" G2 l8 c
end, N5 N% ?9 A* x N c6 J
min_candidate = ...
7 @% b' U W2 ~0 B! O! Z find(c_obj_rank == min(c_obj_rank)); Q: j, g: ^- W0 C9 t; _' H
if length(min_candidate) ~= 1! d9 V/ z$ x e3 a
max_candidate = ...' u4 Z u3 e3 Y+ o
find(c_obj_distance(min_candidate) == max(c_obj_distance(min_candidate)));
" Z7 H/ k: q1 p6 f; A4 Q- }% c if length(max_candidate) ~= 1
/ I& b) H* S2 l9 ^, W( G max_candidate = max_candidate(1);
% @0 _5 w- Q) B8 r) ^' X end
- s5 B- B+ H, U/ M' K# [ f(i,:) = chromosome(candidate(min_candidate(max_candidate)),:);
3 |; |8 Z1 O, u# H% G( j else
) T' }5 b6 j' T' r$ n f(i,:) = chromosome(candidate(min_candidate(1)),:);
8 o3 L- }3 v. g: }% Z/ E" k' C end
0 [4 b1 G9 Q0 qend
* w8 z& x* H. [" T
- ]. s, S# A k% [0 t2 F* B$ E h6 }- r: c# m
⑤genetic_operator.m; x+ P# H# {( P2 _4 {9 C
; l$ p; T- K7 P
function f = genetic_operator(parent_chromosome, M, V, mu, mum, l_limit, u_limit)
' T- N1 C+ X. G4 h& o[N,m] = size(parent_chromosome);* ]8 ?( G+ A9 Y2 L3 w( o2 f5 X
) x+ t W1 K$ G- Tclear m
4 _: x% H( q2 Xp = 1;
. j7 {% G; p: Cwas_crossover = 0;
* D# d. T4 s, O( S* owas_mutation = 0;
" L7 z5 R U q3 K9 v3 P7 x! {5 @1 i5 g0 i
, W/ l5 i5 p" O2 g) Y \
for i = 1 : N
8 `; ?+ y; m% p& |5 e % With 90 % probability perform crossover
) m f; Y ~; P6 V+ @3 g, t1 } if rand(1) < 0.9
# E* P2 j: t$ H/ e* v; u1 d % Initialize the children to be null vector.
* x7 @/ D1 ?8 N4 D, ]8 [# h0 n child_1 = [];' A$ c& e4 M3 Z7 {. w8 m w
child_2 = [];
$ U9 t5 M8 T! s g4 s& _3 A % Select the first parent
2 p9 ^: s. b q5 ^ parent_1 = round(N*rand(1));# K5 A5 O- }2 ~' d8 T( _1 I
if parent_1 < 1! @; |) C7 m) R V6 g
parent_1 = 1;
( n% R& F7 }9 _. f6 K! R/ W end
* }: W# b+ m2 J: I' E% U % Select the second parent
; A8 }/ |6 b: o3 v6 U# N parent_2 = round(N*rand(1));( t7 N: l) Z4 Y. Z
if parent_2 < 1* q6 l6 ], r9 H. w
parent_2 = 1;% j8 e/ g Q! f9 \% ]; c
end3 i3 i- B* G3 k( M7 X( N' O
% Make sure both the parents are not the same. L& u: \, i4 j( `5 {
while isequal(parent_chromosome(parent_1,:),parent_chromosome(parent_2,:))
$ ?) r' Y) f8 e2 u; v% j parent_2 = round(N*rand(1));4 e/ C7 F' o# i4 L n. Y
if parent_2 < 1
* R( t, z/ n8 ~$ C" Q) | parent_2 = 1;2 F- _3 g/ [- @2 g5 R& E$ W- B
end
) `7 f* t0 G$ S+ H end
2 e! L4 ^8 w% i! L/ |5 S g % Get the chromosome information for each randomnly selected
( K( v) \0 _1 S: ^# f % parents$ ]+ ?* I# j7 I4 g7 |6 |
parent_1 = parent_chromosome(parent_1,:);8 ?' }/ B! d7 p* I( K
parent_2 = parent_chromosome(parent_2,:);$ [ f4 d) e* C; r! d! D
% Perform corssover for each decision variable in the chromosome.
& X1 _0 H R U7 g$ p# y9 { for j = 1 : V4 p/ j' {1 w" F3 f$ L$ U( A. G0 T
% SBX (Simulated Binary Crossover).
* a& J! z- o) H) o2 I2 j3 [& u % For more information about SBX refer the enclosed pdf file.
$ O4 J! y2 ^ E( A; ?' e % Generate a random number
( r, ~% x* l6 a6 J/ Z7 x7 U0 h u(j) = rand(1);
$ G# B7 F* @. }( j0 |8 @6 B if u(j) <= 0.5) b) k! H3 o) Z4 Q E
bq(j) = (2*u(j))^(1/(mu+1));9 j. y2 E7 ~+ `( f+ ^
else
' v. {; ]8 R5 C5 X, M bq(j) = (1/(2*(1 - u(j))))^(1/(mu+1));
& r$ o1 k( B0 l% } end8 W# O8 ?$ y: w
% Generate the jth element of first child" L0 ]1 r7 q4 V( \7 J/ W
child_1(j) = ...- e& B5 ]& |8 C9 ]6 I6 [1 o
0.5*(((1 + bq(j))*parent_1(j)) + (1 - bq(j))*parent_2(j));
: u' U8 A; l' O4 ^0 w % Generate the jth element of second child, B. T7 E# K% _$ }1 A0 x9 ^% A$ \
child_2(j) = ...0 p+ H- _* W+ U6 W# K/ A
0.5*(((1 - bq(j))*parent_1(j)) + (1 + bq(j))*parent_2(j));
; H5 J' a q# k% W3 h$ ] % Make sure that the generated element is within the specified
$ |9 \6 H! L# z6 l- m# O % decision space else set it to the appropriate extrema.' z: Y, v* S6 `- C
if child_1(j) > u_limit(j)+ p* I+ O- C7 N
child_1(j) = u_limit(j);$ P% U& o) i5 N; r5 ^
elseif child_1(j) < l_limit(j)8 B0 b# e* g' n2 k- S% {- F
child_1(j) = l_limit(j);5 x. t0 ?6 u" z6 t# v' j: J8 Y6 Y
end
2 v# }9 a- V, s" H) t if child_2(j) > u_limit(j); @9 b' l: `: C* D% l; q' i) g6 @( G& I
child_2(j) = u_limit(j);
) O" Y. b# Z$ {7 r* q5 `9 n elseif child_2(j) < l_limit(j)! X6 o' k4 a/ U; h& d) N
child_2(j) = l_limit(j);
/ |: L: m+ u4 _& ^9 r4 Q9 q# L end& a4 ]0 e- L6 L' C, b
end+ ^6 o- X a: M$ y3 E4 F
child_1(:,V + 1: M + V) = evaluate_objective(child_1, M, V);
9 e( v* n9 j% r, n- g% {4 b child_2(:,V + 1: M + V) = evaluate_objective(child_2, M, V);8 n, {! w. v0 G- y1 _3 d5 o" B
was_crossover = 1;( x; `! l1 ?: @
was_mutation = 0;' d. ]7 n2 n8 f( ^% T0 z$ ^! n
% With 10 % probability perform mutation. Mutation is based on
- b I' d9 _+ \8 u % polynomial mutation.
! g0 v4 i3 E8 m4 o# P. L else
% O; |7 z$ E7 N9 ^- @ % Select at random the parent.7 G v6 ?9 L/ l( O6 G
parent_3 = round(N*rand(1));
1 t! p& f- C( f: J* x+ D if parent_3 < 1
7 F+ q }" l. `2 M6 c3 E: m) n' ?$ C parent_3 = 1;3 z7 G0 ~4 m, [1 C! A3 ]' v
end
8 b: o) y* W9 W) H; I % Get the chromosome information for the randomnly selected parent.
; S3 u. U8 F: G2 o* n child_3 = parent_chromosome(parent_3,:); q T ]: m6 R. S2 t0 p
% Perform mutation on eact element of the selected parent.( H5 D$ K% C; I% L
for j = 1 : V
, o9 _6 ` S0 y: Q- G! v r(j) = rand(1);
8 {7 G/ A: o# Q9 j5 A& s if r(j) < 0.5
4 h( j5 k/ s/ }* Q# p delta(j) = (2*r(j))^(1/(mum+1)) - 1;
3 D% P& ?5 o$ `" c, `! l else$ p& @2 e" \9 `( j0 N$ N0 Y. _
delta(j) = 1 - (2*(1 - r(j)))^(1/(mum+1));
/ }6 m! f( e$ c0 D2 s! z* W end* Z. O7 f( [' B' N y/ W% e) H
% Generate the corresponding child element.& o2 [$ ?7 j' Q& W$ S
child_3(j) = child_3(j) + delta(j);
+ M7 \/ z0 p* u) Y# w % Make sure that the generated element is within the decision, c& o6 I" `1 j! P- {9 ?
% space.+ c3 U4 k1 s5 f
if child_3(j) > u_limit(j)
! @8 f! o$ T: t( V3 t; P child_3(j) = u_limit(j);
3 M$ `. c. d3 E# | elseif child_3(j) < l_limit(j)2 A& K/ \+ e; G5 |$ S6 D
child_3(j) = l_limit(j); b0 o7 s& L+ s- k
end
) u. Z- r! ] Q! {9 p end
0 `& Y4 y. `& {* q child_3(:,V + 1: M + V) = evaluate_objective(child_3, M, V);+ J! Z) q6 d4 F* p% B
% Set the mutation flag1 N; @* D, E/ n$ ^, v
was_mutation = 1;/ \( d( y' c. D8 s2 x* e7 g0 b
was_crossover = 0;
% U6 V" o" h# h end
& I5 k6 B8 ~& }4 w, U: o P z if was_crossover
: n6 @# P, B& N: X8 a' K* F child(p,:) = child_1;
6 E+ F* M+ w4 q1 i: z3 X' d6 |; x9 V% ] child(p+1,:) = child_2;3 E( s% X# D& E+ ?3 |6 z! x
was_cossover = 0;: p! J5 x# @$ |6 O h6 B4 L* g
p = p + 2;
( T5 b- t' A2 S, o4 ]4 ~ elseif was_mutation5 m9 i. o4 y7 O
child(p,:) = child_3(1,1 : M + V);
" \1 @7 f$ l8 w was_mutation = 0;
) ^! l4 S) f, Q! J1 \ p = p + 1;0 n/ x# j( x' [9 Z- E
end
: n9 [% |. _2 C a% u( G2 cend
6 x/ B8 h2 R9 M! B* Zf = child;
0 u( s, \. \$ h; \+ C. y. d4 v8 s y0 V) F3 c+ H" F6 X
; P @1 o, l0 A* v0 [+ h, \" e⑥replace_chromosome.m
% ?! J9 R0 C0 _4 q# N" R/ b
7 G- E8 O/ s0 T1 s+ z4 A6 Hfunction f = replace_chromosome(intermediate_chromosome, M, V,pop)
) g6 D' _% }' q, V+ W' W1 b
5 E7 G' w7 ~/ F7 E' [, o7 C
0 o: t0 v, q* o/ |0 U5 d" s[N, m] = size(intermediate_chromosome);* G, Z& t0 s5 {3 k, ]5 R5 A# h
6 W" m, A. f1 O
% Get the index for the population sort based on the rank# M0 o/ ^! J4 ?5 F
[temp,index] = sort(intermediate_chromosome(:,M + V + 1));+ J/ z/ l9 U' Y' e
7 ~# q8 k# e# ^$ t9 S p! V1 ~) }clear temp m
% @! `/ a* L5 G/ W: S# [4 l0 d+ E: E8 v! E4 w' q7 _
% Now sort the individuals based on the index
8 G- c/ v0 y4 y/ Kfor i = 1 : N
) A; T- b5 P7 G- i: n4 E$ A sorted_chromosome(i,:) = intermediate_chromosome(index(i),:);
9 u) e( `; Q. c' tend
% ]$ M8 m5 M1 `5 ]. M$ X8 o: D$ A; _7 v
% Find the maximum rank in the current population- @6 j$ e9 m5 g: D9 r a4 s+ U) @
max_rank = max(intermediate_chromosome(:,M + V + 1));% c! R- ?4 b% `2 f% J
. I' N5 W+ b/ n; U& t
% Start adding each front based on rank and crowing distance until the
, {9 z4 g$ ?+ G" Z( l' J- ~% whole population is filled.
! k( k# y$ V% U f) Lprevious_index = 0;
5 W- g2 @ Y+ ]( Gfor i = 1 : max_rank
. U8 F1 X. V9 S+ Y1 A7 s- s % Get the index for current rank i.e the last the last element in the
7 K. D! E4 F2 Q0 j % sorted_chromosome with rank i. 1 t2 y" w$ j2 s" v
current_index = max(find(sorted_chromosome(:,M + V + 1) == i));& \- { [2 [; e7 N: n3 c4 y! } ]
% Check to see if the population is filled if all the individuals with1 \# i% Z. g5 y
% rank i is added to the population.
, V2 z. R. _7 K7 f- K if current_index > pop
# x ~5 E5 S3 l% ^) a) ~& E % If so then find the number of individuals with in with current' G% X9 K$ M" \5 T* e5 f
% rank i.: E: t; e; B! q/ c: u D5 o
remaining = pop - previous_index;% A; P' t% c1 t: ^' C
% Get information about the individuals in the current rank i.
+ i4 t( M% ?# l temp_pop = ...
+ ?. ^$ f, |% V4 {9 ^3 {4 U8 ` sorted_chromosome(previous_index + 1 : current_index, :);& {% V9 h3 _/ j& Z6 M
% Sort the individuals with rank i in the descending order based on' @' _' y) v# u; c' F
% the crowding distance.
" a- z' g& w$ B; {; Y [temp_sort,temp_sort_index] = ...
. b1 e+ |6 f; C7 E# T0 h7 H sort(temp_pop(:, M + V + 2),'descend');
1 F( W4 _/ V9 ?* l % Start filling individuals into the population in descending order
( j8 v! Q0 O4 P, ]# Z % until the population is filled.( ?2 d- A3 N' ^4 [ h) e
for j = 1 : remaining
) R, F3 x# R7 k6 E( W" K f(previous_index + j,:) = temp_pop(temp_sort_index(j),:);
6 W* R m' m1 D- o end
* q/ G5 s4 B, j. J return;
8 e# {( l6 P9 ` elseif current_index < pop
+ Y' z! U! T# E6 C % Add all the individuals with rank i into the population.$ Y+ ^( q* h6 `% E* N4 d
f(previous_index + 1 : current_index, :) = ...
1 W3 n! d% D- F( P, t' R: q sorted_chromosome(previous_index + 1 : current_index, :);
4 h- e. B; e8 M/ N0 H r3 w/ a9 C" [ else
/ }( v4 T8 u' Q! `0 f) w % Add all the individuals with rank i into the population.
) B) a; d' ]: D I" [ f(previous_index + 1 : current_index, :) = ...
0 h. I2 g9 J4 Q; V$ N sorted_chromosome(previous_index + 1 : current_index, :);
7 d5 _3 d1 K! H( ~* X return;' j) f9 E. F9 k( x4 x
end2 _7 ^+ Y: A: x2 S
% Get the index for the last added individual.
+ ~" n5 s9 f3 ? S7 a) Y$ T previous_index = current_index;7 r' M G/ v x
end
/ b9 O& o7 a$ h& W$ w5 n+ {3 K' O5 s3 ]+ Z$ U; O! ]* y: p6 q
: Z. Q' v6 e& n* r4 J
⑦自定义评价函数(我选用的ZDT1函数). K' t9 L' |8 o7 k8 S
9 M6 c+ S# k7 T' p0 B D Gfunction f = evaluate_objective(x, M, V): y; \; {* N6 y$ }4 F: Z2 g
f = [];* N$ F! K. l$ O4 s
f(1) = x(1);
) S9 n' n# H! T9 ng = 1;
9 g% Z7 o6 O( D( _7 rsum = 0;7 h6 B0 N: n- Q) }, z" `
for i = 1:V
$ ~. c W' R7 K5 f sum = sum + x(i);
1 m, y6 ? n2 f# ?: Bend- s6 {# k4 g; g/ p/ n
sum = sum + 9*(sum / (V-1));- A K3 y& B: l+ H0 l
g = g + sum;
1 F; U) B d( o4 V) u& hf(2) = g * (1 - sqrt(x(1) / g));
$ A; y- T+ t- v" ^ O! Uend
! r+ |6 S& D( t2 w; X& E
- w" N3 `6 y1 N* i$ u2 X' I/ `3 Y" w7 L" O) c/ [9 D2 P7 S6 x
500个种群运行500代的结果:
, M! b# o7 J, E: N! @8 |1 s4 E' I
+ a# u9 P7 u& Y9 y. Z; E* q9 Z1 C/ n0 L- l6 I: k7 U+ ]
2 l3 q' n, a( ~! Y
' Y8 I/ z" t1 ~+ l
^- F) R1 O8 \
( N% ?& ]( a6 J$ {0 |
|
|