|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
, D) C5 D- _4 k2 {1 N; a: i函数参数 n:贝塞尔阶数 k:要求零点的个数 kind:第几类贝塞尔函数
z+ h" a! M ^1 W4 q- C; |/ ^+ ]8 i. L# `
function x=besselzero(n,k,kind)8 ?6 @5 v; q- Y% p+ K. z3 p* d
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%6 }3 _5 \" K! ?# p9 P
%$ }* x# Z @9 j
% besselzero.m$ A: t' c' k1 C/ d. n1 v2 m
%2 w9 b+ ?! {4 O2 D7 j2 t5 ?/ n1 u
% Find first k positive zeros of the Bessel function J(n,x) or Y(n,x)
2 u7 w; d6 D& T% R% using Halley's method.
, D) |7 r% A7 p%- z9 k0 P( h7 P: W
% Written by: Greg von Winckel - 01/25/05
- n2 b. h5 G1 S: l9 a8 C% Contact: gregvw(at)chtm(dot)unm(dot)edu( s4 g5 I/ h5 s! C; j3 @
%" E* S- v Y r% P9 b. ^6 o
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%+ S/ ^' o* v0 `* ]/ `" Z5 j
k3=3*k;
1 y( w$ Y5 g# @1 [9 zx=zeros(k3,1);
; C6 X1 o: h+ R: d) i; ^1 x# Ffor j=1:k3! D w' | M, g' P! f
2 D( C- _) A1 m4 N1 d
% Initial guess of zeros, M B5 D+ W$ m# H+ `
x0=1+sqrt(2)+(j-1)*pi+n+n^0.4;
- E$ W* Y# a8 R5 F2 p/ g8 Z& j# H ; [: z$ c1 @6 I: d* v- c+ o- `( j
% Do Halley's method
# H$ l9 t/ E; u# Z. K5 Y x(j)=findzero(n,x0,kind);
: g' D/ k/ c& J7 b5 {; Z if x(j)==inf
! c2 m+ Y! k0 f0 J error('Bad guess.'); `7 r: R0 l2 N- R4 h, N, y; @* h
end$ t! [: I/ W3 k9 p9 F6 G
: U0 g' C" P( Z# j( P Y0 R
end
- s0 `5 S& G9 Rx=sort(x);
- i% S! x/ P8 x, t0 }2 H) u3 J7 ]dx=[1;abs(diff(x))];0 W- H4 L0 y. i- B: m
x=x(dx>1e-8);
$ g7 P" r4 F, E3 M1 {! ux=x(1:k);. u% d2 r* i9 m7 s% K
function x=findzero(n,x0,kind)
- B% d, u7 \/ E( j; Q! Yn1=n+1; n2=n*n;
( [+ a8 o% D* R e0 f$ l% Tolerance
& \, R! Y( d( H+ z+ Q9 F8 L0 atol=1e-12;7 l" q& j8 B( a8 O& J
% Maximum number of times to iterate
5 e' M, j/ Z3 ^: {( O5 \1 kMAXIT=100;
q1 u# v- b% |" o8 d: q0 o' L8 K6 k% Initial error
5 M2 H& o! n7 O3 ~ g. Lerr=1; | a1 F4 m% @0 E' y7 `$ `: b8 l+ ^' L4 m
iter=0;* f% t% T9 P/ c5 J0 u
while abs(err)>tol & iter<MAXIT+ w, M9 W- \7 C" J5 h
M; U' i- h/ c3 T6 i switch kind& A* Z9 p2 S0 J f
case 1
, N& l, }2 k0 T# h3 x a=besselj(n,x0); ( j$ b; i3 d1 i1 D4 d- D
b=besselj(n1,x0); , `$ G& j1 K' o5 E" o1 i' T7 a
case 2+ J$ i$ @( v8 V0 S) i
a=bessely(n,x0);! S5 D% ?! b( V' e8 v
b=bessely(n1,x0);
- T+ p4 P' ^4 F. s* s+ @# [ end
' g9 b: R$ ?, h0 I3 a& I 6 E# T7 O) t" s& M, M! J
x02=x0*x0;, c5 l7 P3 q2 _) B* D# y1 [/ q
# B. b% P+ ] y2 G. E" U3 g err=2*a*x0*(n*a-b*x0)/(2*b*b*x02-a*b*x0*(4*n+1)+(n*n1+x02)*a*a);- f; R4 E/ b1 v- _, T1 g
* b& I4 P# F2 i! O, j
x=x0-err;& M; V- t3 ^9 w/ j
x0=x;
4 `4 Y9 j2 I3 P& y4 K9 G iter=iter+1;
: b: O0 \1 f) h: p
' e) Y$ p4 I4 o) ~2 v: Zend
( Z3 a1 @8 O4 u. w( X$ }if iter>MAXIT-1
; A+ S; n1 C3 c7 A- e warning('Failed to converge to within tolerance. ',...: F, C- N- s* W" a
'Try a different initial guess');5 ~' S& F* [& w+ K
x=inf;
) ^+ w- \1 F5 ?+ y) o4 z: a# Aend. S. t! t9 V7 G) j& x& u0 c3 X x7 l
2 \2 V+ e) A1 y |
|