|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
v; j j# C) Z# L% S. U7 n函数参数 n:贝塞尔阶数 k:要求零点的个数 kind:第几类贝塞尔函数
5 E# j' y. ^: k9 U/ M# g' c4 d q ^8 Y( v& V, @) m/ \+ M4 S
function x=besselzero(n,k,kind)
* V8 I5 d, W& k% Y: Z%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%7 k- l" T4 z$ h W1 S
%
: U0 |8 f2 y/ n; W% besselzero.m7 [4 E j K$ d, f6 H/ L9 v
%
P9 q* @4 @5 ~8 B9 D% Find first k positive zeros of the Bessel function J(n,x) or Y(n,x): m! D% B, n8 Z
% using Halley's method.2 f, N+ {2 y5 \/ Q
%4 i" x$ l/ A8 R# r8 [5 u* _
% Written by: Greg von Winckel - 01/25/05
0 _3 e9 D$ u+ z& m/ F" f N% Contact: gregvw(at)chtm(dot)unm(dot)edu
: p: \; A( I. x- Y+ L%
" d5 H4 B1 f* [8 V%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 ?) }- C8 ?/ x$ E9 ]7 ]6 Dk3=3*k;
, N1 w6 e& u* s$ P+ O! }! r; Z# d1 Zx=zeros(k3,1);
7 j. Q# I% Z/ ]* a- Xfor j=1:k36 s5 n. l' ^+ v0 m( `2 w9 C" p. e) Q
4 W: U6 ?* Y6 ~0 ?
% Initial guess of zeros# E% ^' a/ u% ^1 f9 ]- e* l+ v4 |
x0=1+sqrt(2)+(j-1)*pi+n+n^0.4;
\6 ~ e U, O4 O2 m
. T8 V/ R8 T5 M2 f2 j % Do Halley's method
8 N2 [( g. q, R x(j)=findzero(n,x0,kind);
! [' X% ~, Q1 D& E! m if x(j)==inf y0 Q) T: K8 ?0 H+ ]0 {/ E6 O
error('Bad guess.');
4 n5 Q3 u: H1 A; l0 {% ?: v% R3 W end+ Q4 U/ S4 k+ h9 }6 I8 h
. v1 @! i1 ~- v1 I+ c4 T: j$ K
end3 U3 k- J: P s
x=sort(x);. }0 U$ W' J6 T
dx=[1;abs(diff(x))];$ C7 C' S% v6 \) ^) Q2 E# B
x=x(dx>1e-8);
: U+ i2 V% x" n) y; p# cx=x(1:k);
5 M( L) I! ?, m. ~. ^: D9 b8 c6 Jfunction x=findzero(n,x0,kind)* j. N" e& g6 \3 Z |
n1=n+1; n2=n*n;3 R: d- d/ W' U/ Y7 S- r
% Tolerance3 `/ F' K( V/ ]% o
tol=1e-12;
, b8 l5 J( Q7 s, N% Maximum number of times to iterate
+ ~: S" g) C) e# N' zMAXIT=100;
& B) \, l. `( ^, _+ R) V P% Initial error
# H3 e4 ?# j$ Y! qerr=1;
" ? `) N" v' _( K' e4 m- Oiter=0;/ n" O0 E, ]5 f3 }3 J$ W
while abs(err)>tol & iter<MAXIT. t! j. i; ]2 X# F
1 H' T6 ]/ x1 `9 u I switch kind4 {0 A i' P8 _! N5 P( s
case 1
# L, {% l* `! d0 ^+ i* L& N a=besselj(n,x0);
6 m5 N; e0 J; Y5 { b=besselj(n1,x0);
$ {5 W4 F, H2 S5 [3 e7 V case 2
* A% V7 \: ?1 c; P0 \. e& a a=bessely(n,x0);
$ x" \0 H9 \4 A" ]: J b=bessely(n1,x0);
! i# Q1 e/ M; F# h end, l; Z; S' [+ l9 B
& [7 V. x" O9 K2 s# [1 P ~ x02=x0*x0;
/ x$ r0 H6 a: d/ a/ l 1 k. i6 J: d1 b3 ^7 H
err=2*a*x0*(n*a-b*x0)/(2*b*b*x02-a*b*x0*(4*n+1)+(n*n1+x02)*a*a);; \3 ]4 @9 J2 _- }, J- K
& C( h# M7 X3 c% ]0 i7 g5 c; q. N
x=x0-err;5 o9 A0 x2 Z8 E1 n$ Z6 S* t+ s
x0=x;
' w1 V& m$ H0 P3 |& I- K% i: B* X: i iter=iter+1;
0 [- c7 F9 k1 t; G" T) |' x ) |( I. l7 k, |, s" B6 x9 K
end
4 i% q8 }) f/ n3 P7 v$ o6 j% O; Vif iter>MAXIT-1
: E1 f$ O1 I% {1 _) b warning('Failed to converge to within tolerance. ',...
1 l* _2 @1 _) }# c: M% l 'Try a different initial guess');
) }: C- \; q1 ~) l x=inf; % ~1 c% {% i0 h' _- O. {
end) ]) K% d4 u# H! R# B
$ z% B9 E2 [* O2 e# g |
|