|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
Matlab算例:
1 e: t7 t4 T2 m# gclear all;
$ T; m U0 e$ [- Y/ U# O% Xclc;( b! \7 d& M Q/ j4 \
%%
5 W* Q' S: t5 ce = 2; g = 1;
3 z. ~! S L; ^& n0 ]! H3 t* Q[x,y] = meshgrid(0:20,0:15); % This makes regular grid6 l' b! Z1 N' R. ]
u = e*x-g*y; % Linear velocity field
8 O9 d; l: o4 V6 W; mv = g*x-e*y;7 O$ Y: R M- S" J& W! j. H5 @7 |' g
[phi,psi] = flowfun(u,v); % Here comes the potential and streamfun.
5 S) x0 [3 t/ f%
6 q3 k* }/ [2 C; @. g* W6 `% ^contour(phi,20,'--r','Displayname','phi') % Contours of potential2 ` G8 B$ d3 K4 _3 a. \
hold on
! y- f0 n$ @ Y3 v; w9 \ Xcontour(psi,20,'-g','Displayname','psi') % Contours of streamfunction
/ m% W, A' S5 V) t5 v" d0 qquiver(x,y,u,v,'Displayname','velocity') % Now superimpose the velocity field
% W# `, I+ |! v; X1 F: T- {# Flegend show;0 _% H& ?7 z' j: {
+ ^, }6 k. A! r4 a# I1 M/ A
5 G0 J. t; H. v7 w- v! k. L5 Q2 n |
|