|
REGRESS Multiple linear regression using least squares." i5 }. T c V6 ]9 h% ~
B = REGRESS (Y,X) * n& c/ h" ~; \- D# r
returns the vector B of regression coefficients in the
. ~8 q( A8 t# K" L1 m: I8 llinear model Y = X*B.
/ y) T: Z- [4 Q& X' n' r K* g1 {# `: p! @/ @- @! H! i% C
X is an n-by-p design matrix, with rows
, M0 ?' |. Z: Xcorresponding to observations and columns to predictor variables.3 n, o9 q. Q4 \7 J, C6 s6 |
" i1 E* ?) r8 d) Y+ ZY is an n-by-1 vector of response observations.7 X; ^' H3 x+ n
REGRESS
+ G: O/ b$ j5 A, I. ~. r9 i4 H8 I0 `0 q多元线性回归——用最小二乘估计法
+ y% R) M* Y) ^5 kB = REGRESS (Y,X) ,: C+ C4 i% p, p, H$ H
- h; x, }! c- o+ K8 Y返回值为线性模型Y = X*B的回归系数向量1 R2 [& T0 v9 ]0 ~
X ,n-by-p 矩阵,行对应于观测值,列对应于预测变量* B' U- ]4 S& V- L3 K- D
Y ,n-by-1 向量,观测值的响应(即因变量)
5 ~8 i# r3 C5 Y" y5 f8 B* O5 |0 v: P. r/ o t' q% `0 C
[B,BINT] = REGRESS (Y,X)
) o ~+ N6 z w! b+ i4 Q" oreturns a matrix BINT of 95% confidence intervals for B.) k" }" B. s4 f) U2 R$ d
BINT,B的95%的置信区间矩阵! q2 H5 z$ O6 c* M6 M, v( m* F- o2 q
8 ~( h( P, X+ \ R, ][B,BINT,R] = REGRESS (Y,X)/ O# b2 h& f3 M( j& N5 M" o
returns a vector R of residuals.6 v7 V' m( X4 N- V" A3 t2 N" n# _
R,残差向量% j7 h* T' w8 o# i0 b9 P& C
1 f' j% R# E" h) Z. `% g
[B,BINT,R,RINT] = REGRESS (Y,X)
8 T# a$ A, K" k2 C- ?8 hreturns a matrix RINT of intervals that8 e$ ~6 `1 z U3 N4 H- K
can be used to diagnose outliers.
) A0 G4 `' l! v/ A% L) l
0 z' X& X/ D! D! @If RINT(i,: ) does not contain zero,
- E" L% u9 T; @0 p9 ^* L6 t- C6 t4 X# f: k+ T. s
then the i-th residual is larger than would be expected, at the 5%" @- m+ ]& a. Z, p* `/ f* ]. p/ G3 ?
significance level.
- Q+ R/ k/ `; q E8 P
# t0 m1 R3 x; D% R5 i. l' vThis is evidence that the I-th observation is an outlier.7 l" A$ P5 {5 y" M, A8 E
* H9 C& `9 C' ]
RINT,区间矩阵,该矩阵可以用来诊断异常(即发现奇异观测值,译者注)。0 G+ [" x# \% b$ j% d2 g, d
如果RINT(i,:)所定区间没有包含0,则第i个残差在默认的5%的显著性水平比我们所预期的要大,这可说明第i个观测值是个奇异点(即说明该点可能是错误而无意义的,如记录错误等,译者注)" ^1 \" Z2 g# l# r* R# N
: S; Z# y% p9 J( L$ n
[B,BINT,R,RINT,STATS] = REGRESS (Y,X)
@. D% S% ` b8 G' k2 Lreturns a vector STATS containing
! ?: t' W, |( ^' M6 L# t( \the R-square statistic, the F statistic and p value for the full model,and an estimate of the error variance.# l9 ^& }% r* x* k! q4 O
9 W/ G. R' R% u. E6 _, @3 CSTATS,向量,包括R方统计量,F统计量,总模型的p值(还不清楚)和方差的一个估计(还不清楚)) z4 z' Z4 r2 W
9 B: j* S% Q3 q3 b. f3 W, }1 m7 q[...] = REGRESS (Y,X,ALPHA)
' n% B# w4 X$ _. z; B# d6 i9 fuses a 100*(1-ALPHA)% confidence level to compute BINT, and a (100*ALPHA)% significance level to compute RINT.
" i t$ h- a, e" ]" M用100*(1-ALPHA)%的置信水平来计算BINT,2 }! N+ I: T5 M9 | c8 f% j
用(100*ALPHA)%的显著性水平来计算RINT2 X# P5 }7 J- c: L" m# H
* s' u; m( G7 \/ l& e
X should include a column of ones so that the model contains a constant; t# ?# U _3 \7 Q x% o8 `( C/ u" h1 S
term.. w. z8 k& w4 `$ e& u
The F statistic and p value are computed under the assumption b, f) u1 {8 I6 N/ |4 M( `( r2 h7 }
that the model contains a constant term, and they are not correct for5 E$ {$ X& E+ U$ [& y; w R
models without a constant.
* S9 ~$ Q5 r- Q9 v- g/ MThe R-square value is one minus the ratio of, G) ]) o5 J& k, {
the error sum of squares to the total sum of squares.+ C$ |" M. u' |% X
This value can$ D" e3 _, H. N0 P! y' E2 R
be negative for models without a constant, which indicates that the model is not appropriate for the data.1 x T+ I" n* r% h0 o1 Q
X应该包含一个全“1”的列,这样则该模型包含常数项。F统计量和p值是在模型有常数项的假设下计算的,如果模型没有常数项,则计算得的F统计量和p值是不正确的。The R-square value is one minus the ratio of the error sum of squares to the total sum of squares.(此句无法把握,请高手帮忙~~!)若模型没有常数项,则这个值可以为负值,这也表明这个模型对数据是不合适的。(即数据不适合用多元线性模型,译者注) z$ N9 a3 w/ C
8 k. c0 W& @9 N" O7 ?4 O; M) sIf columns of X are linearly dependent, REGRESS sets the maximum2 p6 i% V6 g% n2 I( v8 R9 t
possible number of elements of B to zero to obtain a "basic solution",
& y$ p G, p* S6 l. F% @and returns zeros in elements of BINT corresponding to the zero elements of B.2 I. O2 l0 p; p& v; M
如果X的列是线性相关的,则REGRESS将使B的元素中“0”的数量尽量多,以此获得一个“基本解”,并且使B中元素“0”所对应的BINT元素为“0”。3 S( e4 t2 }" ?2 h
* z% I1 b6 y/ e2 ~
REGRESS treats NaNs in X or Y as missing values, and removes them. REGRESS- d0 }2 x* K" h) K0 u" b
将X或者Y中的NaNs当作缺失值处理,并且移除它们。 |
|