|
REGRESS Multiple linear regression using least squares.4 R4 p D/ t# o) N: X3 C
B = REGRESS (Y,X) ' d8 b3 J3 V5 h, \
returns the vector B of regression coefficients in the
* g! Q; N8 V% a; V" N. Xlinear model Y = X*B.. q, ?- G G B+ t/ S! [: l* m
% e$ F& X$ G6 i, x
X is an n-by-p design matrix, with rows t* |5 B4 C6 o. z! V$ Z2 |2 \9 C7 M
corresponding to observations and columns to predictor variables.
0 D* e1 J* L; h4 c, c- A8 v, x$ d2 t* I( `, z. h: ^
Y is an n-by-1 vector of response observations.
9 s, v) C# g/ C* w! n7 [' \; E6 GREGRESS
$ S6 m% T) G* b6 m多元线性回归——用最小二乘估计法
9 l% S: D: f- r: r) oB = REGRESS (Y,X) ,
. z1 n0 n) |5 A4 A9 c, a' Y+ f: W
返回值为线性模型Y = X*B的回归系数向量
9 x8 _3 S+ J# ]/ _4 {# k a X ,n-by-p 矩阵,行对应于观测值,列对应于预测变量
5 n- o9 `1 P9 s Y ,n-by-1 向量,观测值的响应(即因变量)
, E! v8 Q2 _. t6 `3 R+ i
: a+ n5 w- V. _- |! b6 t& f: g' u# z[B,BINT] = REGRESS (Y,X) : v# c1 e# e% V
returns a matrix BINT of 95% confidence intervals for B.
( a, p6 A4 U$ O) eBINT,B的95%的置信区间矩阵
& B) ?- X- b3 K/ G0 K/ a" N3 v& R# K, `2 o$ ?, s, R' d
[B,BINT,R] = REGRESS (Y,X)
0 E4 h' Z( c/ Z5 ^& lreturns a vector R of residuals., r6 m5 r& D" t; @! c: Z
R,残差向量
4 C( a# h q0 D8 X% b0 l6 U; `8 _' q" u7 A0 v: h! V" s4 N8 u0 G
[B,BINT,R,RINT] = REGRESS (Y,X) % B+ E$ _5 {$ ], s; e6 B2 G
returns a matrix RINT of intervals that
( L- h" I% {! D% Z/ r' o1 q9 Ycan be used to diagnose outliers.; ?+ f9 `9 m- u7 q
/ o& _6 A9 @, P( SIf RINT(i,: ) does not contain zero,4 p% W6 ^ t! p$ v g
/ M l% B. l- V8 D2 @5 X; k- |
then the i-th residual is larger than would be expected, at the 5%" {+ Z: P, `0 V' U" v
significance level.! a$ g: e9 T& H4 a
" x( f( P6 O" L0 L8 P/ X, NThis is evidence that the I-th observation is an outlier.
* }1 l/ O+ K% z. \
$ c# s, F# c3 v C m8 YRINT,区间矩阵,该矩阵可以用来诊断异常(即发现奇异观测值,译者注)。2 y4 F; ?7 E r% P: n; }/ p
如果RINT(i,:)所定区间没有包含0,则第i个残差在默认的5%的显著性水平比我们所预期的要大,这可说明第i个观测值是个奇异点(即说明该点可能是错误而无意义的,如记录错误等,译者注)9 Y4 T- L4 c' ~& X+ J
7 S6 {$ O( w* l
[B,BINT,R,RINT,STATS] = REGRESS (Y,X) + ? U% e! I, t4 Q- p1 a4 i1 N# J
returns a vector STATS containing2 W9 \, i' T# E6 S* o# a, D) ~
the R-square statistic, the F statistic and p value for the full model,and an estimate of the error variance.6 y) |; v$ c$ e; Q* f; n: h, S
# i& a; }5 { C! O7 r! z5 t+ |
STATS,向量,包括R方统计量,F统计量,总模型的p值(还不清楚)和方差的一个估计(还不清楚)- r9 Q* W0 i2 G5 l0 y
9 l/ ]" Y6 `: d/ g* M[...] = REGRESS (Y,X,ALPHA) ( w5 ^4 L" F) v2 r
uses a 100*(1-ALPHA)% confidence level to compute BINT, and a (100*ALPHA)% significance level to compute RINT.4 x2 t3 b& g, }
用100*(1-ALPHA)%的置信水平来计算BINT, r+ M3 E" I* U8 R0 u8 m9 e! h
用(100*ALPHA)%的显著性水平来计算RINT
5 Q5 U) v# Q0 B! ]/ h, X& e N: z
X should include a column of ones so that the model contains a constant# U/ `$ u$ w$ j. t3 t
term.% T! N8 t# n5 R0 r' t0 B) J" F" r5 P
The F statistic and p value are computed under the assumption
3 _2 e6 _+ T) o# c# R Ythat the model contains a constant term, and they are not correct for6 r' E' V2 `/ p" e% Z5 G
models without a constant.. F# |: `: [: A$ S$ a" s1 F% H* P
The R-square value is one minus the ratio of. _0 Q" o" c5 l. X, C# u7 w$ S
the error sum of squares to the total sum of squares./ x" Y w" h1 O8 `* K1 b: i7 }
This value can; ^! ]8 X' a5 I7 q
be negative for models without a constant, which indicates that the model is not appropriate for the data.
! D0 R- t* B/ T% A& @X应该包含一个全“1”的列,这样则该模型包含常数项。F统计量和p值是在模型有常数项的假设下计算的,如果模型没有常数项,则计算得的F统计量和p值是不正确的。The R-square value is one minus the ratio of the error sum of squares to the total sum of squares.(此句无法把握,请高手帮忙~~!)若模型没有常数项,则这个值可以为负值,这也表明这个模型对数据是不合适的。(即数据不适合用多元线性模型,译者注)) T" ~$ S, I1 q, z' w) D( {' O
/ P j% E: @" D$ c9 c( t
If columns of X are linearly dependent, REGRESS sets the maximum
* `( K; Z2 v% j$ t Ipossible number of elements of B to zero to obtain a "basic solution",0 H9 f( B* l6 M; Q8 k# M! h7 Q
and returns zeros in elements of BINT corresponding to the zero elements of B.7 e `. |* U3 t. _. x
如果X的列是线性相关的,则REGRESS将使B的元素中“0”的数量尽量多,以此获得一个“基本解”,并且使B中元素“0”所对应的BINT元素为“0”。
2 p) S: t" W6 \' ]$ U- D h$ s Q( {6 X
6 p1 x0 u0 i+ q5 ZREGRESS treats NaNs in X or Y as missing values, and removes them. REGRESS
9 e9 c0 \0 W' ]; a: s将X或者Y中的NaNs当作缺失值处理,并且移除它们。 |
|