当 CAN 总线上的一个节点(站)发送数据时,它以报文的形式广播给网络中所有节点,对每个节点来说,无论数据是否是发给自己的,都对其接收。
. C9 ^7 ?; ^ D) } S3 }! C' d) } L
" o% a& S* P1 `: H* k9 J+ h* V9 X每组报文开头的11 位字符为标识符,定义了报文的优先级,这种报文格式成为面向内容的编制方案。同一系统中标识符是唯一的,不可能有两个站发送具有相同标识符的报文,当几个站同时竞争总线读取时,这种配置十分重要。
1 P! p1 M \5 O( _1 {4 {
大体的工作原理我们搞清了,但是根本的协议我们还要花一番功夫。下面介绍一个重要的名词,“显性”和“隐性”:
. i7 a- m, p9 L! z8 a
在我看到的很多文章里,有很多显性和隐性的地方,为此我头痛不已,最终我把它们彻底弄明白了。
- H) R, e( n" P% {4 k. z; K* w
首先 CAN 数据总线有两条导线,一条是黄色的,一条是绿色的------分别是CAN_High 线和CAN_Low 线,当静止状态时,这两条导线上的电平一样,这个电平称为
静电平,大约为2.5 伏。
" C! f. O& _3 {4 c' o) G+ r V, h
这个静电平状态就是隐形状态,也称隐性电平,也就是没有任何干扰的时候的状态称为隐性状态。当有信号修改时,CAN_High 线上的电压值变高了,一般来说会升高至少1V;而CAN_Low 线上的电压值会降低一个同样值,也是1v。
8 F2 m+ v8 Y/ E/ z& G: s" Q
那么这时候,CAN_High 就是 2.5v+1v=3.5v,它就处于激活状态了。而CAN_Low 降为2.5v-1v=1.5v。可以看看这个图
由此我们得到
( h) u9 j ?) E: D0 o6 U& f3 O
在隐性状态下,CAN_High 线与CAN_Low 没有电压差,这样我们看到没有任何变化也就检测不到信号。但是在显性状态时,改值最低为2V,我们就可以利用这种变化才传输数据了。所以出现了那些帧,那些帧中的场,那些场中的位,云云。
9 Z/ @& s5 Z, G8 d L! u+ d3 k, ^% B
在总线上通常逻辑1 表示隐性。而0 表示显性。这些1 啊,0 啊,就可以利用起来为我们传数据了。利用这种电压差,我们可以接收信号。
/ y/ p$ S( q v4 [; \9 f1 K
一般来说,控制单元通过收发器连接到 CAN 驱动总线上,这个收发器(顾名思义,可发送,可接收)内有一个接收器,该接收器是安装在接收一侧的差动信号放大器。然后,这个放大器很自然地就放大了CAN_High 和CAN_Low 线的电平差,然后传到接收区。如下图
由上图可知,当有电压差,差动信号放大器放大传输,将相应的数据位转化为0。
下面我们进入重点难点-----报文
" R6 j7 K0 U K% Z) D
所谓报文,就是CAN 总线上要传输的数据报,为了安全,我们要给我们传输的数据报编码定一下协议,这样才能不容易出错,所以出现了很多的帧,以及仲裁啊,CRC 效验。这些都是难点。
- x& V* ]" n. t3 {3 p/ \
识别符的概念
: S; N9 X$ _ F+ f$ L6 q
识别符顾名思义,就是为了区分不同报文的可以鉴别的好多字符位。有标准的,和扩展的。标准的是11 位,扩展的是29 位。他有一个功能就是可以提供优先级,也就是决定哪个报文优先被传输,报文标识符的值越小,报文具有越高的优先权。
; j8 J7 Y( O& A5 p- K2 v4 \
CAN 的报文格式有两种,不同之处其实就是识别符长度不同,具有11 位识别符的帧称为标准帧,而还有29 位识别符的帧为扩展帧,CAN 报文有以下4 个不同的帧类型。分别是:
2 U# c. O4 s0 p4 m
(1) 数据帧:数据帧将数据从发送器传输到接收器;
(2) 远程帧:总线节点发出远程帧,请求发送具有同一标识符的数据帧;
(3) 错误帧:任何节点检测到总线错误就发出错误帧;
(4) 过载帧:过载帧用已在先行的后续的数据帧(或远程帧)之间提供一附加的延时。
1 J) u V: t6 V0 a
我们先研究数据帧吧。
J' v7 q: I" E; v8 g& R+ q: F; F
2 i) s8 s: F" [. k% z8 f
在获得总线控制权的节点发送数据过程中,其他节点成为报文的接收节点,并且不会在总线再次空闲之前发送报文,在这逐位的比较中,最终节点B 因为第七位的偏差丢掉了总线。从此单纯监听,江山就拱手让给了节点A 了。这就是仲裁机制。
, E! [, c4 S8 V- {
上面我们说过,报文有两种格式,标准和扩展。这里,不同的格式仲裁场是不一样的。标准格式下,仲裁场由11 位识别符和RTR 位组成。
+ U( ~0 B ` z+ J9 ]1 X% E
但在扩展格式里,包括29 位识别符、SRR 位、IDE 位、RTR 位。
8 v: z; g- K- P7 w
RTR 位,Remote Tranmission Request BIT 全称为远程发送请求位。它在数据帧里必须为显性0 ,但在远程帧里为隐性1。
4 R- i. n1 p5 `
我晕,为什么这么搞呢,不急,先留着这个问题。
; z0 i0 c% r! ^& X) g B0 z
SRR 位,替代远程请求位,SRR 是一隐性位,也就是1,它在扩展格式的标准帧RTR 位位置,那么标准帧怪不得优先于扩展帧了,因为在传输完11 位标识符之后(扩展帧的后18 位在最后发送,先发送11 位标识符),轮到标准帧的RTR 位和扩展帧的SRR 位了。
h- l' ]) k4 v5 v2 s
这时候,标准帧的RTR 为显性,而扩展帧SRR 为隐性,这样,总线自然就被标准帧占据。
$ R3 h0 \2 ?' B$ Q0 O
同时上面那个问题,也一目了然了,CAN 总线协议设计者,肯定是设计了数据帧优先于远程帧。所以IDE(Identifier Extension Bit),全称识别符扩展位,它属于扩展格式的仲裁场。
3 m6 l$ S# |$ `; V& |6 W6 \
对于扩展格式,IDE位属于仲裁场;对于标准格式,IDE位属于控制场。标准格式的IDE位为“显性”,而扩展格式的IDE位为“隐性”。
标准格式中的数据帧
拓展格式中的数据帧
z' L. \6 t j e, R( J/ ~
5 I/ R% M: {1 ]/ r( `& r控制场
- T2 ~: X- R/ k. c/ t' n4 H
控制场由6个位组成,标准格式和扩展格式的控制场格式不同。标准格式里的帧包括数据长度代码、IDE位(为显性位)及保留位r0。扩展格式里的帧包括数据长度代码和两个保留位:r1和r0。其保留位必须发送为显性,但是接收器认可“显性”和“隐性”位的任何组合。其结构如图所示:
控制场结构
数据长度代码(标准格式以及扩展格式)DLC,如下表所示
数据帧长度代码DLC
0 L) x+ s, R" k. [; I4 c; L
数据长度代码指示了数据场里的字节数量。其中:d—“显性”, r—“隐性”,数据帧允许的数据字节数为{0,1,...,7,8}。其他的数值不允许使用。
2 ?4 P/ b6 Y# y X
数据场
; ~, v; ]3 r4 ^# s* [9 G
数据场由数据帧里的发送数据组成。它可以为0~8个字节,每字节包含了8个位,首先发送最高有效位(MSB)。
7 H: c8 J, g3 z. j6 {- x& y) p7 l
循环冗余码CRC场是数据通信领域中最常用的一种差错校验码,其特征是信息字段和校验字段的长度可以任意选定。
) w! `% L+ H7 S2 s- e$ |
CRC场包括CRC序列(CRC Sequence),其后是CRC界定符(CRC Delimiter),结构如图:
生成 CRC 码的基本原理:
5 m$ E+ e% C% C4 N
任意一个由二进制位串组成的代码都可以和一个系数仅为‘0’和‘1’取值的多项式一一对应。例如:代码1010111 对应的多项式为x6+x4+x2+x+1,而多项式为x5+x3+x2+x+1 对应的代码101111。
* W' K- V9 A' `( I, Z$ v1 X: q
参考一下下面的例题,自已再领悟一下吧!已知信息位为1101,生成多项式G(x)= x3+x+1,求CRC 码。
1 t- q$ ]9 U5 ^0 a! h- ]
要传输的信息序列为1101,在末尾添加所给多项式的最高次阶个0,如本题为x^3,则添加3个0,变为:1101000;
, E/ V, q8 }' B" M; h; g
由多项式G(X)=X3+X+1,得其阶数为1的二进制编码为:1011;1101000对1011进行模二除法,所得到的余数即为校验码,把校验码添加在原数据尾部即为所求的编码,则实际发送的数据序列为1101001。校验码计算过程如图所示:
模二除法
; f4 S8 \6 q/ \. m+ T2 R
应答场(ACK Field)
3 B# o; q; X; n& Y- y. s8 a
应答场长度为2个位,包含应答间隙(ACK Slot)和应答界定符(ACK Delimiter),如图所示。在ACK场(应答场)里,发送节点发送两个“隐性”位。
- S9 O: G' n& P. ^
当接收器正确地接收到有效的报文,接收器就会在应答间隙(ACK Slot)期间向发送器发送一“显性”位以示应答。
/ o/ ?+ A; M1 r1 F: M; V! z7 F; u& {$ F- q& D, B. z" P& i+ d1 E
帧结尾
每一个数据帧和远程帧均由一标志序列界定。这个标志序列由7个“隐性”位组成。
二、远程帧
; `5 x5 l* r/ K7 \
通过发送远程帧,总线的节点发出远程帧,请求以前发送给它数据帧的节点再发送一遍。具体发送哪个数据帧,由远程帧的标识符决定。
' o4 @8 x F( {) ]- t# G# T+ i" q _! ]
与数据帧类似,远程帧也有标准格式和扩展格式,而且都由6个不同的位场组成:帧起始、仲裁场、控制场、CRC场、应答场、帧结尾。
1 U7 Y, Z |; j) q
与数据帧相反,远程帧的RTR位是“隐性”的。它没有数据场,数据长度代码DLC的数值是不受制约的(可以标注为容许范围0~8里的任何数值),此数值是相应于数据帧的数据长度代码。远程帧结构如图所示:
远程帧结构
三、错误帧
* W2 [9 T6 d1 [' j
错误帧由两个不同的场组成,第一个场是不同节点提供的错误标志(Error Flag)的叠加,第二个场是错误界定符。
; M% s" n' |- T4 I, R9 j
为了能正确地终止错误帧,“错误认可”的节点要求总线至少有长度为3个位时间的总线空闲。因此,总线的载荷不应为100%。错误帧结构如图:
- o" T/ ?$ Y0 P) b! w! |- t0 _
2 e) x9 I1 y# m" [(1) 错误标志,有两种形式的错误标志:激活错误标志 和 认可错误标志
“激活错误”标志由6个连续的“显性”位组成;“认可错误”标志由6个连续的“隐性”的位组成,除非被其他节点的“显性”位重写。
, F* f1 j8 v2 a o
(2) 错误界定符,错误界定符包括8个“隐性”的位。
9 o3 v# _6 _# C7 b' B$ n错误标志传送了以后,每一个节点就发送一个“隐性”的位,并一直监视总线直到检测出一个“隐性”的位为止,然后就开始发送其余7个“隐性”位。
; u' [! {; }- {$ X1 n* y; Z. U0 [5 }
四、过载帧
, Q, K( v% q9 _0 ?) U) Q
过载帧(Overload Frame)包括两个位场:过载标志 和 过载界定符,其结构如图:
过载帧结构图
有三种过载的情况会引发过载标志的传送:接收器的内部情况,需要延迟下一个数据帧和远程帧。
- `2 j J' Q1 q( }4 r J/ l
在间歇(Intermission)的第1和第2字节检测到一个“显性”位。这里有个间歇的概念。我们可以讲讲。间歇属于帧间空间的一部分。它包含三个隐性位。间歇期间,所有的站不允许传送数据帧或远程帧。它唯一要做的就是标示一个过载条件。
% ]$ i$ V% F1 n) x0 M/ k
如果CAN节点在错误界定符或过载界定符的第8位(最后一位)采样到一个显性位,节点会发送一个过载帧。该帧不是错误帧,错误计数器不会增加。
8 p; L6 l4 O2 [) j. h) R+ p$ B
(1)过载标志(Overload Flag)
过载标志由6个“显性”的位组成。过载标志的所有形式和“激活错误”标志的一样。
, `( O5 H3 m9 ]4 |, x
(2)过载界定符(Overload Delimiter)
过载界定符包括8个“隐性”的位。
% B- L2 N% c# t1 `5 q" |/ T2 P+ @% L
五、帧间空间
1 S" D4 y0 M; {$ U
数据帧(或远程帧)与先行帧的隔离是通过帧间空间实现的,无论此先行帧类型如何(数据帧、远程帧、错误帧、过载帧)。
9 t0 [5 a# P* k1 B
帧间空间包括间歇、总线空闲的位场。如果“错误认可”的节点已作为前一报文的发送器,则其帧间空间除了间歇、总线空闲外,还包括称作“挂起传送”(暂停发送)(Suspend Transmission)的位场。
: v' u6 D0 R( M( `1 H
对于不是“错误认可”的节点,或作为前一报文的接收器的节点,其帧间空间如图:
非 “错误认可”帧间空间
对于作为前一报文发送器的“错误认可”的节点,其帧间空间如图:
“错误激活”帧间空间
(1)总线空闲(Bus Idle)
总线空闲的时间是任意的。只要总线被认定为空闲,任何等待发送报文的节点就会访问总线。在发送其他报文期间,有报文被挂起,对于这样的报文,其传送起始于间歇之后的第一个位。总线上检测到的“显性”的位可被解释为帧的起始。
) U6 D D/ o2 Q3 G! c7 f! d6 M
(2)挂起传送(Suspend Transmission)
“错误认可”的节点发送报文后,节点就在下一报文开始传送之前或总线空闲之前发出8个“隐性”的位跟随在间歇的后面。如果与此同时另一节点开始发送报文(由另一节点引起),则此节点就作为这个报文的接收器。
再来几张实物图:
; u: Z5 L& J+ t& b4 ^; Z" Y
% ^+ [0 ]" V! ~8 ?: J# d7 y
0 w& u4 _( d: i- I8 Q6 P
; k& R: x+ H7 L) i' w
, i; w' ~' l8 ]8 J- a/ @+ Z& M
4 E H! ?& d' x: s+ i
* q1 I, u7 ^; M, b9 w) T! X5 d) d9 A; Q4 }
( s8 b1 S! s, Q" h8 Z7 Q) g! n" g- c W: H. |6 Q0 n, Y
; D0 N# K q" ~% j6 c: Z