TA的每日心情 | 开心 2019-11-20 15:05 |
---|
签到天数: 2 天 [LV.1]初来乍到
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
本帖最后由 Colbie 于 2020-3-18 09:58 编辑
8 o; R. O- N3 f
1 F8 ?) T! p' A' ~, u 核主元分析(Kernel principal component analysis ,KPCA)在降维、特征提取以及故障检测中的应用。主要功能有:(1)训练数据和测试数据的非线性主元提取(降维、特征提取)
* J; t5 J: r& K2 [) @, Y(2)SPE和T2统计量及其控制限的计算1 j- L) o' @* @) |% J
(3)故障检测
7 J2 w" e8 i9 @! z4 e
+ Q6 j( _3 s- |( x) F2 f参考文献:4 e `' }& F9 ?! x' g1 z
Lee J M, Yoo C K, Choi S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical engineering science, 2004, 59(1) : 223-234.
! M$ B! @' ^+ T- r! Y8 n" P$ o4 |' A! _ h7 G% _
1. KPCA的建模过程(故障检测):
: d O* J3 |5 c2 j6 s(1)获取训练数据(工业过程数据需要进行标准化处理)
, m+ c* m' G# T+ j7 {) W(2)计算核矩阵# K& L) b2 [0 d' z" N+ K' J
(3)核矩阵中心化" K; I' M' S7 D9 _
(4)特征值分解2 g9 s- f A9 ?! V0 s0 [
(5)特征向量的标准化处理0 U6 `% M1 Q6 K% u- x4 C5 r
(6)主元个数的选取
7 K8 Z$ |: E4 @; ~! `2 ]. y(7)计算非线性主成分(即降维结果或者特征提取结果)
5 s, z N) I( i6 k4 I" b(8)SPE和T2统计量的控制限计算
" F" y% o1 |. z9 C+ a- function model = kpca_train(X,options)
- % DESCRIPTION
- % Kernel principal component analysis (KPCA)
- %
- % mappedX = kpca_train(X,options)
- %
- % INPUT
- % X Training samples (N*d)
- % N: number of samples
- % d: number of features
- % options Parameters setting
- %
- % OUTPUT
- % model KPCA model
- %
- %
- % Created on 9th November, 2018, by Kepeng Qiu.
- % number of training samples
- L = size(X,1);
- % Compute the kernel matrix
- K = computeKM(X,X,options.sigma);
- % Centralize the kernel matrix
- unit = ones(L,L)/L;
- K_c = K-unit*K-K*unit+unit*K*unit;
- % Solve the eigenvalue problem
- [V,D] = eigs(K_c/L);
- lambda = diag(D);
- % Normalize the eigenvalue
- V_s = V ./ sqrt(L*lambda)';
- % Compute the numbers of principal component
- % Extract the nonlinear component
- if options.type == 1 % fault detection
- dims = find(cumsum(lambda/sum(lambda)) >= 0.85,1, 'first');
- else
- dims = options.dims;
- end
- mappedX = K_c* V_s(:,1:dims) ;
- % Store the results
- model.mappedX = mappedX ;
- model.V_s = V_s;
- model.lambda = lambda;
- model.K_c = K_c;
- model.L = L;
- model.dims = dims;
- model.X = X;
- model.K = K;
- model.unit = unit;
- model.sigma = options.sigma;
- % Compute the threshold
- model.beta = options.beta;% corresponding probabilities
- [SPE_limit,T2_limit] = comtupeLimit(model);
- model.SPE_limit = SPE_limit;
- model.T2_limit = T2_limit;
- end! x _5 Z% F/ q0 m8 Z, d! o
. q0 B2 S; G. X9 L9 G
6 @) C3 X8 k; d2 q& n" V: }# A2. KPCA的测试过程:
% q1 V0 j* o3 G; G(1)获取测试数据(工业过程数据需要利用训练数据的均值和标准差进行标准化处理)
) w+ _- a% V& y(2)计算核矩阵5 V. ?; S+ d& Q5 |. `7 v3 a
(3)核矩阵中心化
! s5 |7 z2 _; l* `9 U( ]. Z" d6 a(4)计算非线性主成分(即降维结果或者特征提取结果)6 |' ` n' O2 ~1 ^
(5)SPE和T2统计量的计算
' i' b% k& d6 z# Q" i% `; s/ w! g- function [SPE,T2,mappedY] = kpca_test(model,Y)
- % DESCRIPTION
- % Compute the T2 statistic, SPE statistic,and the nonlinear component of Y
- %
- % [SPE,T2,mappedY] = kpca_test(model,Y)
- %
- % INPUT
- % model KPCA model
- % Y test data
- %
- % OUTPUT
- % SPE the SPE statistic
- % T2 the T2 statistic
- % mappedY the nonlinear component of Y
- %
- % Created on 9th November, 2018, by Kepeng Qiu.
- % Compute Hotelling's T2 statistic
- % T2 = diag(model.mappedX/diag(model.lambda(1:model.dims))*model.mappedX');
- % the number of test samples
- L = size(Y,1);
- % Compute the kernel matrix
- Kt = computeKM(Y,model.X,model.sigma );
- % Centralize the kernel matrix
- unit = ones(L,model.L)/model.L;
- Kt_c = Kt-unit*model.K-Kt*model.unit+unit*model.K*model.unit;
- % Extract the nonlinear component
- mappedY = Kt_c*model.V_s(:,1:model.dims);
- % Compute Hotelling's T2 statistic
- T2 = diag(mappedY/diag(model.lambda(1:model.dims))*mappedY');
- % Compute the squared prediction error (SPE)
- SPE = sum((Kt_c*model.V_s).^2,2)-sum(mappedY.^2 ,2);
- end" p7 {! Z7 `& ?' i/ K
) p" B- ]/ l. l5 c5 S
3 n& M- X0 A" ]. \" }& ~0 ~; I$ N( L% W0 {! ^+ M( u
3. demo1: 降维、特征提取& N" v3 w+ p& O( @% w
(1) 源代码* O; y# H) c9 F1 M8 Y
- % Demo1: dimensionality reduction or feature extraction
- % ---------------------------------------------------------------------%
- clc
- clear all
- close all
- addpath(genpath(pwd))
- % 4 circles
- load circledata
- %
- X = circledata;
- for i = 1:4
- scatter(X(1+250*(i-1):250*i,1),X(1+250*(i-1):250*i,2))
- hold on
- end
- % Parameters setting
- options.sigma = 5; % kernel width
- options.dims = 2; % output dimension
- options.type = 0; % 0:dimensionality reduction or feature extraction
- % 1:fault detection
- options.beta = 0.9; % corresponding probabilities (for ault detection)
- options.cpc = 0.85; % Principal contribution rate (for ault detection)
- % Train KPCA model
- model = kpca_train(X,options);
- figure
- for i = 1:4
- scatter(model.mappedX(1+250*(i-1):250*i,1), ...
- model.mappedX(1+250*(i-1):250*i,2))
- hold on
- end
5 s8 w2 {' ^0 A
* U, i, H+ }5 K% Z- Z( Q$ q
( M! [/ U% ?8 l(2)结果 (分别为原图和特征提取后的图)
4 y/ b( x' U9 v8 i' l9 `, K# q1 [; [+ O \5 z
! C. `6 l7 b) d/ X2 B4. demo2: 故障检测(需要调节核宽度、主元贡献率和置信度等参数来提高故障检测效果)
/ p) h) c3 N* ]4 Y(1)源代码
! j+ B- K1 B1 R" z- P, \: n. u- % Demo2: Fault detection
- % X: training samples
- % Y: test samples
- % Improve the peRFormance of fault detection by adjusting parameters
- % 1. options.sigma = 16; % kernel width
- % 2. options.beta % corresponding probabilities
- % 3. options.cpc ; % principal contribution rate
- % ---------------------------------------------------------------------%
- clc
- clear all
- close all
- addpath(genpath(pwd))
- %
- X = rand(200,10);
- Y = rand(100,10);
- Y(20:40,: ) = rand(21,10)+3;
- Y(60:80,: ) = rand(21,10)*3;
- % Normalization (if necessary)
- % mu = mean(X);
- % st = std(X);
- % X = zscore(X);
- % Y = bsxfun(@rdivide,bsxfun(@minus,Y,mu),st);
- % Parameters setting
- options.sigma = 16; % kernel width
- options.dims = 2; % output dimension
- options.type = 1; % 0:dimensionality reduction or feature extraction
- % 1:fault detection
- options.beta = 0.9; % corresponding probabilities (for ault detection)
- options.cpc = 0.85; % principal contribution rate (for ault detection)
- % Train KPCA model
- model = kpca_train(X,options);
- % Test a new sample Y (vector of matrix)
- [SPE,T2,mappedY] = kpca_test(model,Y);
- % Plot the result
- plotResult(model.SPE_limit,SPE);
- plotResult(model.T2_limit,T2);2 |$ t( F' Q3 {6 e, c |% T9 o* c
3 g; ]6 p* k3 V7 z( y5 S
- B. D4 V6 g; r' @6 s
(2)结果(分别是SPE统计量和T2统计量的结果图)
. q; ~7 y) J R! n: e( w/ Q2 q3 Y i6 `) d' o3 C
5 D% E) ~5 Z; y3 v' {) E$ u
附件是基于KPCA的降维、特征提取和故障检测程序源代码。如有错误的地方请指出,谢谢。5 d8 l7 a( v* w3 @& \) Z$ O9 i9 l9 D
1 c; d9 D2 ?6 L
|
|