TA的每日心情 | 开心 2019-11-20 15:05 |
|---|
签到天数: 2 天 [LV.1]初来乍到
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
本帖最后由 Colbie 于 2020-3-18 09:58 编辑 : ?- V" _8 |* Q+ Z' e
1 P- W `7 ^3 ~- q+ `" N I
核主元分析(Kernel principal component analysis ,KPCA)在降维、特征提取以及故障检测中的应用。主要功能有:(1)训练数据和测试数据的非线性主元提取(降维、特征提取)5 k5 r# L) P9 j9 K# L
(2)SPE和T2统计量及其控制限的计算
- g, L$ u' l3 H. `8 a* p(3)故障检测" X6 m7 P; F, o$ L
. ] s& a$ V; u% Y9 @( |* \* D
参考文献:: H2 y. W( ^0 j
Lee J M, Yoo C K, Choi S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical engineering science, 2004, 59(1) : 223-234.: J- U, w$ R" j+ W3 E) R1 {
% i7 K. g8 P9 I% P7 u1. KPCA的建模过程(故障检测):
3 X/ r! }7 D. e: A3 [( B# O(1)获取训练数据(工业过程数据需要进行标准化处理)
p1 Z1 z; H, {3 G( ^9 W7 {( p2 L" q' U(2)计算核矩阵5 q0 h5 m$ b+ ~
(3)核矩阵中心化
, c# p# R, U) N(4)特征值分解
! k/ n% a( K( D p, a# G& j(5)特征向量的标准化处理$ z* K6 N/ F g& h# N5 F' a' W
(6)主元个数的选取
+ K7 O! Z; A4 v& m/ F. r* \(7)计算非线性主成分(即降维结果或者特征提取结果)8 c) c+ R H. h
(8)SPE和T2统计量的控制限计算! G( n$ [! e1 N2 q( x: a7 w
- function model = kpca_train(X,options)
- % DESCRIPTION
- % Kernel principal component analysis (KPCA)
- %
- % mappedX = kpca_train(X,options)
- %
- % INPUT
- % X Training samples (N*d)
- % N: number of samples
- % d: number of features
- % options Parameters setting
- %
- % OUTPUT
- % model KPCA model
- %
- %
- % Created on 9th November, 2018, by Kepeng Qiu.
- % number of training samples
- L = size(X,1);
- % Compute the kernel matrix
- K = computeKM(X,X,options.sigma);
- % Centralize the kernel matrix
- unit = ones(L,L)/L;
- K_c = K-unit*K-K*unit+unit*K*unit;
- % Solve the eigenvalue problem
- [V,D] = eigs(K_c/L);
- lambda = diag(D);
- % Normalize the eigenvalue
- V_s = V ./ sqrt(L*lambda)';
- % Compute the numbers of principal component
- % Extract the nonlinear component
- if options.type == 1 % fault detection
- dims = find(cumsum(lambda/sum(lambda)) >= 0.85,1, 'first');
- else
- dims = options.dims;
- end
- mappedX = K_c* V_s(:,1:dims) ;
- % Store the results
- model.mappedX = mappedX ;
- model.V_s = V_s;
- model.lambda = lambda;
- model.K_c = K_c;
- model.L = L;
- model.dims = dims;
- model.X = X;
- model.K = K;
- model.unit = unit;
- model.sigma = options.sigma;
- % Compute the threshold
- model.beta = options.beta;% corresponding probabilities
- [SPE_limit,T2_limit] = comtupeLimit(model);
- model.SPE_limit = SPE_limit;
- model.T2_limit = T2_limit;
- end
8 B- y8 @/ m9 A! W& B4 W
% t, m1 s" n2 o3 ]7 H+ o6 V/ M7 R# V
J; }( l% A9 \$ r7 G5 ]2. KPCA的测试过程:
, e) J' c1 ]* t. X# n7 P$ e(1)获取测试数据(工业过程数据需要利用训练数据的均值和标准差进行标准化处理)0 j& Z: X/ Z5 j
(2)计算核矩阵: @# d: V; f; r/ m9 U- p
(3)核矩阵中心化
: g" K! U3 A v+ a, }(4)计算非线性主成分(即降维结果或者特征提取结果)' U) s& {; z6 y
(5)SPE和T2统计量的计算
% ]+ y; e0 U3 V" Y& p f* |4 a( p5 z- function [SPE,T2,mappedY] = kpca_test(model,Y)
- % DESCRIPTION
- % Compute the T2 statistic, SPE statistic,and the nonlinear component of Y
- %
- % [SPE,T2,mappedY] = kpca_test(model,Y)
- %
- % INPUT
- % model KPCA model
- % Y test data
- %
- % OUTPUT
- % SPE the SPE statistic
- % T2 the T2 statistic
- % mappedY the nonlinear component of Y
- %
- % Created on 9th November, 2018, by Kepeng Qiu.
- % Compute Hotelling's T2 statistic
- % T2 = diag(model.mappedX/diag(model.lambda(1:model.dims))*model.mappedX');
- % the number of test samples
- L = size(Y,1);
- % Compute the kernel matrix
- Kt = computeKM(Y,model.X,model.sigma );
- % Centralize the kernel matrix
- unit = ones(L,model.L)/model.L;
- Kt_c = Kt-unit*model.K-Kt*model.unit+unit*model.K*model.unit;
- % Extract the nonlinear component
- mappedY = Kt_c*model.V_s(:,1:model.dims);
- % Compute Hotelling's T2 statistic
- T2 = diag(mappedY/diag(model.lambda(1:model.dims))*mappedY');
- % Compute the squared prediction error (SPE)
- SPE = sum((Kt_c*model.V_s).^2,2)-sum(mappedY.^2 ,2);
- end
/ @* J+ c; h) p) H& E, X" I9 C 6 }7 H! f" N' b. j: ~) U L
8 ]' o T" {3 W5 ~0 J g) I/ K( t5 s! |; i; y
3. demo1: 降维、特征提取2 i/ N) I/ m8 F
(1) 源代码/ N" s3 j& P+ I5 I6 X) \7 g
- % Demo1: dimensionality reduction or feature extraction
- % ---------------------------------------------------------------------%
- clc
- clear all
- close all
- addpath(genpath(pwd))
- % 4 circles
- load circledata
- %
- X = circledata;
- for i = 1:4
- scatter(X(1+250*(i-1):250*i,1),X(1+250*(i-1):250*i,2))
- hold on
- end
- % Parameters setting
- options.sigma = 5; % kernel width
- options.dims = 2; % output dimension
- options.type = 0; % 0:dimensionality reduction or feature extraction
- % 1:fault detection
- options.beta = 0.9; % corresponding probabilities (for ault detection)
- options.cpc = 0.85; % Principal contribution rate (for ault detection)
- % Train KPCA model
- model = kpca_train(X,options);
- figure
- for i = 1:4
- scatter(model.mappedX(1+250*(i-1):250*i,1), ...
- model.mappedX(1+250*(i-1):250*i,2))
- hold on
- end7 d& l' ]. f5 c
% p3 {( T- ]( Q
+ W9 t' r# t1 Y; }2 U# L8 ?(2)结果 (分别为原图和特征提取后的图)/ ]6 m) @5 G( _9 h' x& b: [" }
6 Z! Y; Z/ n2 O/ N
) U* b3 `5 [$ b* ?: W) t4 F: D7 W* ^
4. demo2: 故障检测(需要调节核宽度、主元贡献率和置信度等参数来提高故障检测效果)
* w6 e% C, j% F/ X# N; |(1)源代码
5 f4 B, Q% Q( ^- % Demo2: Fault detection
- % X: training samples
- % Y: test samples
- % Improve the peRFormance of fault detection by adjusting parameters
- % 1. options.sigma = 16; % kernel width
- % 2. options.beta % corresponding probabilities
- % 3. options.cpc ; % principal contribution rate
- % ---------------------------------------------------------------------%
- clc
- clear all
- close all
- addpath(genpath(pwd))
- %
- X = rand(200,10);
- Y = rand(100,10);
- Y(20:40,: ) = rand(21,10)+3;
- Y(60:80,: ) = rand(21,10)*3;
- % Normalization (if necessary)
- % mu = mean(X);
- % st = std(X);
- % X = zscore(X);
- % Y = bsxfun(@rdivide,bsxfun(@minus,Y,mu),st);
- % Parameters setting
- options.sigma = 16; % kernel width
- options.dims = 2; % output dimension
- options.type = 1; % 0:dimensionality reduction or feature extraction
- % 1:fault detection
- options.beta = 0.9; % corresponding probabilities (for ault detection)
- options.cpc = 0.85; % principal contribution rate (for ault detection)
- % Train KPCA model
- model = kpca_train(X,options);
- % Test a new sample Y (vector of matrix)
- [SPE,T2,mappedY] = kpca_test(model,Y);
- % Plot the result
- plotResult(model.SPE_limit,SPE);
- plotResult(model.T2_limit,T2);6 F( H: B* L! }) s
3 D+ |4 L. `: Z* Y7 E
. ?: h/ T/ A0 u+ O- W6 A" z(2)结果(分别是SPE统计量和T2统计量的结果图)4 |" y2 @3 c- X, u9 Q
4 d$ m- i& S6 J( t3 ~& |
% O2 {1 Q+ R! L. {$ z+ ^: A附件是基于KPCA的降维、特征提取和故障检测程序源代码。如有错误的地方请指出,谢谢。
) w: ], i- l# Q! K
/ }( Q3 S/ s% ` m |
|