| 
 | 
	
    
 
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册  
 
x
 
MATLAB源程序代码分享:MATLAB梯形法求离散数据点的数值积分- P' }& o# W( t$ W( f 
%% MATLAB trapz 函数, 使用梯形法, 求解离散数据点的数值积分1 p) H" H% M, ~ 
clear;clc;close all 
3 I2 G0 r1 k" a) fx=[-3 -1 0.5 2 3 6 7.5];   % 离散数据点的横坐标 x+ l# {2 w1 @0 C# w5 \4 Q 
y=[1 2 5 5.5 1.5 3 1];     % 离散数据点的纵坐标 y 
( x* g: A3 q( L8 t( ~Q=trapz(x,y)               % 计算积分结果:离散数据点所连成的折线与 x 轴所围面积 
" i9 G+ g4 q4 l 
: ?3 c6 Z& f) u1 y6 Y0 ^%% 动画演示, 梯形法求解数值积分的计算过程 
1 D6 m5 J3 X$ T8 Jplot(x,y,'*','MarkerSize',10,'Color',[0.2 0.7 0.2])  % 绘制离散的数据点 
& ~5 ~+ [- V6 w* x, h1 ~% xaxis([-4 8 0 6]) 
: i3 C% P6 H2 N' Y4 J$ s5 uxlabel('横坐标 x') 
7 {: {& ]4 p1 Uylabel('纵坐标 y') 
; q9 W# L: \6 \3 k: E3 Wtitle('梯形法求解数值积分的动画演示')- Q$ |1 M) T- N! F0 K 
hold on( ~. `6 s+ \3 x 
4 V; o, L2 ^% }  Y; ]  t 
for k=1:length(x)-1# Q% b3 a" v9 c$ ], s 
    pause(1) 
) Q) s6 b+ v% p9 q    plot(x(k:k+1),y(k:k+1),'--','LineWidth',2,'Color',[0.3 0.7 1])  % 将离散的数据点, 使用直线依次相连 
3 D" X2 ?  X: k, L! d+ lend 
9 ?' l: z$ \* N7 Q  G( ^3 I 
; K, z, A% e  M# Y: e8 Afor k=1:length(x) 
6 q- L. T, V2 B2 M/ y! U1 @    pause(1) 
! ?! F" E6 _& j, X- A    plot([x(k) x(k)],[0 y(k)],'--','LineWidth',2,'Color',[0.5 0.2 0.6])  % 绘制各离散数据点与横轴的垂线, 得到各个小梯形 
3 \4 t/ I' O% k$ v0 [end 
/ X4 B! ~; n' i. ^' H7 y& j 
6 {% D3 F+ h/ S2 R: zfor k=1:length(x)-1; u$ N+ [/ n7 _& v1 A1 b: N 
    pause(1) 
! J7 t7 ]+ ?* ?8 \* q    patch([x(k) x(k) x(k+1) x(k+1)],[0 y(k) y(k+1) 0],[1 0.8 0.1])  % 依次给每一个小梯形面积着色, 表示各个小梯形面积的求和过程3 [8 c- E( v) a/ u5 w% ], {, [! P 
end 
, K1 C  Z5 ^# H2 I$ {! w" ` 
* b' k5 w: H  u, i& ` |   
 
 
 
 |