找回密码
 注册
查看: 390|回复: 1
打印 上一主题 下一主题

状态空间模型和卡尔曼滤波

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2020-1-16 14:41 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
第十一章状态空间模型和卡尔曼滤波
State Space Models and Kalman Filter
上世纪60年代初,由于工程控制领域的需要,产生了卡尔曼滤波(Kalman Filtering)。 进入70年代初,人们明确提出了状态空间模型的标准形式,并开始将其应用到经济领域。
+ ?6 a/ @  e9 q0 n" L80年代以后,状态空间模型已成为一种有力的建模工具。许多时间序列模型,包括典型的线性回归模型和ARIMA模型都能作为特例写成状态空间的形式,并估计参数值。在计量经济学文献中,状态空间模型被用来估计不可观测的时间变量:理性预期,测量误差,长期收入,不可观测因素(趋势和循环要素)。状态空间模型在经济计量学领域其他方面的大量应用请参见Harvey (1989) 和Hamilton (1994)。4 {' \. y4 `# _
) J& b4 L; Q) Q5 b: f- R6 ^
( B1 n0 w1 |9 n+ L+ K9 I
游客,如果您要查看本帖隐藏内容请回复

+ [2 Q8 s- o. a( I" A; d1 |% ~3 x. `( v- \
1 n. W. P( l; p& ]; I4 x' s
+ Z) s+ r" u# ]
- t9 Y- ?# L  z% H; B
* h& Y& P4 y& F+ ~9 q
$ ?) H8 A* ^/ v

该用户从未签到

2#
发表于 2020-1-16 19:45 | 只看该作者
状态空间模型和卡尔曼滤波
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-5-24 17:23 , Processed in 0.078125 second(s), 26 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表