EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
状态空间模型和卡尔曼滤波 State Space Models and K alman Filter ! N& a4 G$ p! M& W/ d# }
上世纪60年代初,由于工程控制领域的需要,产生了卡尔曼滤波(Kalman Filtering)。 进入70年代初,人们明确提出了状态空间模型的标准形式,并开始将其应用到经济领域。80年代以后,状态空间模型已成为一种有力的建模工具。许多时间序列模型,包括典型的线性回归模型和A RIMA模型都能作为特例写成状态空间的形式,并估计参数值。在计量经. C0 f$ z* q& J3 F; S( Y
济学文献中,状态空间模型被用来估计不可观测的时间变量:理性预期,测量误差,长期收入,不可观测因素( 趋势和循环要素)。状态空间模型在经济计量学领域其他方面的大量应用请参见Harvey (1989)和Hamilton ( 1994)。
# O# t8 _" U- l* y! [: ^& V. T0 \+ ]
在一般的统计模型中出现的变量都是可以观测到的,这些模型以反映过去经济变动的时间序列数据为基础,利用回归分析或时间序列分析等方法估计参数,进而预测未来的值。状态空间模型的特点是提出了“状态”这一-概念。而实际上,无论是工程控制问题中出现的某些状态(如导弹轨迹的控制问题)还是经济系统所存在的某些状态都是一种不可观测的变量,正是这种观测不到的变量反映了系统所具有的真实状态,所以被称为状态向量。这种含有不可观测变量的模型被称为UC模型(Unobservable Component Model)。 @+ v" c/ {, U5 o9 C9 G9 q7 Y
- f0 j- J* J/ m t; ?! K! o8 w
UC模型通过通常的回归方程式来估计是不可能的,必须利用状态空间模型来求解。状态空间模型建立了可观测变量和系统内部状态之间的关系,从而可以通过估计各种不同的状态向量达到分析和观测的目的。( W; T9 X9 \ i$ V8 m
6 c, ]* j5 \8 L' E& r3 x7 m: I
EViews状态空间对象对单方程或多方程动态系统提供了一个直接的、易于使用的界面来建立、估计及分析方程结果。它提供了大量的建立、平滑、滤波及预测工具,帮助我们利用状态空间形式来分析动态系统。' m; @: g, A4 J0 T7 C3 k, a$ W
- O- w1 n. X% ?4 ?6 S
. w2 f) @! Q, A1 m' d. g+ B4 p |8 c, T6 X5 `$ a$ g
6 t* d! T( m5 V4 g
k) L- o+ T- v6 ^" N6 c& W
|