找回密码
 注册
查看: 466|回复: 1
打印 上一主题 下一主题

状态空间模型和卡尔曼滤波

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2020-1-6 14:29 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
状态空间模型和卡尔曼滤波
State Space Models and K alman Filter

% P8 f* C5 q% P2 J4 O上世纪60年代初,由于工程控制领域的需要,产生了卡尔曼滤波(Kalman Filtering)。 进入70年代初,人们明确提出了状态空间模型的标准形式,并开始将其应用到经济领域。80年代以后,状态空间模型已成为一种有力的建模工具。许多时间序列模型,包括典型的线性回归模型和A RIMA模型都能作为特例写成状态空间的形式,并估计参数值。在计量经) ^7 b; n5 |1 Y. f7 F" z
济学文献中,状态空间模型被用来估计不可观测的时间变量:理性预期,测量误差,长期收入,不可观测因素( 趋势和循环要素)。状态空间模型在经济计量学领域其他方面的大量应用请参见Harvey (1989)和Hamilton ( 1994)。  T9 R, ?9 ^/ M3 l7 B9 e

  T/ D$ F5 p: d9 @7 [在一般的统计模型中出现的变量都是可以观测到的,这些模型以反映过去经济变动的时间序列数据为基础,利用回归分析或时间序列分析等方法估计参数,进而预测未来的值。状态空间模型的特点是提出了“状态”这一-概念。而实际上,无论是工程控制问题中出现的某些状态(如导弹轨迹的控制问题)还是经济系统所存在的某些状态都是一种不可观测的变量,正是这种观测不到的变量反映了系统所具有的真实状态,所以被称为状态向量。这种含有不可观测变量的模型被称为UC模型(Unobservable Component Model)。
) \+ y6 }6 b9 o+ A$ n) d9 F2 g) f
6 T7 @1 v% z& B% K  b$ h7 _6 y" VUC模型通过通常的回归方程式来估计是不可能的,必须利用状态空间模型来求解。状态空间模型建立了可观测变量和系统内部状态之间的关系,从而可以通过估计各种不同的状态向量达到分析和观测的目的。; F; B) ~+ b: o( s, T8 ^

5 m3 f0 }. \8 I9 {& @- i9 cEViews状态空间对象对单方程或多方程动态系统提供了一个直接的、易于使用的界面来建立、估计及分析方程结果。它提供了大量的建立、平滑、滤波及预测工具,帮助我们利用状态空间形式来分析动态系统。3 H! U1 A3 e2 U9 F3 B$ D

4 m2 Z9 Y: O  @: k; u/ R. _  z
游客,如果您要查看本帖隐藏内容请回复

$ r- h0 B, ]6 J" C! m! R4 `. J( }. N  o) M5 W* j8 E
+ ^- u6 `' ^2 e* P

$ R- S/ P8 y* j1 U( t/ t1 a" X3 o

该用户从未签到

2#
发表于 2020-1-6 18:46 | 只看该作者
这个名字听着都高大上:状态空间模型和卡尔曼滤波
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-5-25 15:59 , Processed in 0.078125 second(s), 26 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表