EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
本帖最后由 3265269760 于 2019-12-27 19:44 编辑
) _! M( h. G" ~' b7 G# ?6 T* u3 c! |
5 v5 }. X. D- o3 G2 D: E& ^在过去RKNN-Toolkit通过ONNX来完成MXNet和PyTorch等模型的支持,开发者需要先将模型转换为ONNX格式,再进一步转换为RKNN模型,这一过程较为繁琐,并且提高了引入问题的概率使得最终转换失败。
' ^" a$ r9 ~, {6 p' zMXNet及PyTorch发展非常迅速,普及度快速提高, RKNN-Toolkit新版本将原生支持MXNet及PyTorch模型的转换,在端侧AI平台的框架和模型支持覆盖度上继续保持领先。 随着端侧设备数量的成倍增长,需要以更具可扩展性的方式部署端侧AI应用软件。Docker容器技术是业界广泛通行的解决这一挑战的有力工具。
. S2 J. F% }* O0 PRK1808平台系统将提供对Docker的支持,通过硬件抽象层,在容器中仍可调用NPU的强劲算力,经测试,容器中的AI模型推理性能几乎没有损失。 通过上述更新,开发者基于瑞芯微Rockchip AI平台的产品开发、部署、维护将更为迅捷。瑞芯微将继续与广大开发者共同努力,加速AI在各类场景的落地。
' u4 M r3 o) @" d |