EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
! ~6 i( N" _4 a4 [- O案例分析 Inverse Transform of Vector Padded Inverse Transform of Matrix Conjugate Symmetric Vector 3 ?, Q# M* i1 o. `9 @1 t. _& Y2 U5 C9 J0 v
1 q2 T2 o( Z) ]0 S! ?3 S9 o" `案例分析; i; h. x0 S( l" V/ V
Inverse Transform of Vector
6 L3 O2 Y: p8 L! |2 x& b0 I% e& |4 u- r" |9 U+ C
- % The Fourier transform and its inverse convert between data sampled in time and space and data sampled in frequency.
- %
- % Create a vector and compute its Fourier transform.
- X = [1 2 3 4 5];
- Y = fft(X)
- % Y = 1×5 complex
- %
- % 15.0000 + 0.0000i -2.5000 + 3.4410i -2.5000 + 0.8123i -2.5000 - 0.8123i -2.5000 - 3.4410i ⋯
- %
- % Compute the inverse transform of Y, which is the same as the original vector X.
- ifft(Y)
- % ans = 1×5
- %
- % 1 2 3 4 5
^. y" F5 k9 R! e2 H4 [4 K6 B 4 u4 x& Z7 ?6 `
* s# `- ]% ^$ E- O5 H* d
4 N U' a9 B5 B6 e1 N
l3 f+ ?# j Z5 M6 W, J) }
结果如下:
6 t& s7 a+ G z) S3 w1 F' M9 f7 ?, _8 a Z3 Q. v% G; [/ Z) {
ifft_vector
; P6 C# \0 V+ V. M6 x- L: F
0 Z# j: s( e$ W, X! nY =
! v4 Y7 T% o5 S1 h) V( h! y |# g/ `2 X* n6 F* c, F/ W( C$ Z
1 至 4 列 U& s; F0 q( c! Q: A
% Y% e* D0 P( u9 d. X 15.0000 + 0.0000i -2.5000 + 3.4410i -2.5000 + 0.8123i -2.5000 - 0.8123i
0 ^& J+ c+ v8 k6 q6 c
$ T. l! D2 x* o& T( p 5 列
$ N% e8 v4 V- w& H5 ?$ h. h. c/ B; Q9 E' L
-2.5000 - 3.4410i
- g b& j# p! ?0 N. S ^8 F
% v# W" j6 L( S' U+ u# C: `" aans =
: U* ^# t d& n8 ]; K# e5 `% H5 t( N: M9 s) ]* {# D9 o+ q/ u
1 2 3 4 55 m: }5 r; Q4 C& u, E( F* T' m
6 y% _) g. K& k& b& ]" V% ]
3 O; U, Q9 I/ T& L/ a$ M9 \9 y4 J1 RPadded Inverse Transform of Matrix! x e ]' v' @7 ] @
- clc
- clear
- close all
- % The ifft function allows you to control the size of the transform.
- %
- % Create a random 3-by-5 matrix and compute the 8-point inverse Fourier transform of each row.
- % Each row of the result has length 8.
- Y = rand(3,5)
- n = 8;
- X = ifft(Y,n,2)
- size(X)8 Y9 b1 l0 F- h
5 z6 M- `& k4 j- e* @ r
/ [ S: [1 N( z4 u @6 ~; f
$ S1 ?/ A4 l$ H0 b% z4 I' P8 m3 e2 a/ L* K0 h
结果如下:% v+ T+ [* g& S6 Y, J1 ^) P) i
% X' E: K3 _& b. h
Y =$ e, a! i" u0 X, ^* q
# q0 J0 C! L! M 0.8147 0.9134 0.2785 0.9649 0.9572
/ C# r1 Y' k5 T 0.9058 0.6324 0.5469 0.1576 0.4854
1 ^- F2 E; l4 N 0.1270 0.0975 0.9575 0.9706 0.80031 B7 M/ M2 V8 k/ ?
# g% c! g; Y' J' K
X =
) I# N, G' h( \: T
0 B' T7 N7 \# ] 1 至 4 列
% H8 |7 |) Y; c
( @- ~, `3 I7 t$ L 0.4911 + 0.0000i -0.0224 + 0.2008i 0.1867 - 0.0064i -0.0133 + 0.1312i
5 n! {) R, x2 r. W4 p 0.3410 + 0.0000i 0.0945 + 0.1382i 0.1055 + 0.0593i 0.0106 + 0.0015i; x6 l$ o' ~; N( E% U
0.3691 + 0.0000i -0.1613 + 0.2141i -0.0038 - 0.1091i -0.0070 - 0.0253i! T; y5 ?7 J/ S! ~; {4 m8 Y8 z2 u
6 {, s4 {- S" I3 G8 N 5 至 8 列
# d2 A$ J' e; z5 R; L1 U8 y9 ?* v/ @4 f9 J2 a3 y& O9 D9 J2 u" |6 w
0.0215 + 0.0000i -0.0133 - 0.1312i 0.1867 + 0.0064i -0.0224 - 0.2008i) H% e2 g# u3 t
0.1435 + 0.0000i 0.0106 - 0.0015i 0.1055 - 0.0593i 0.0945 - 0.1382i
7 L( k5 o( K$ A. |/ l/ \) D6 ? 0.1021 + 0.0000i -0.0070 + 0.0253i -0.0038 + 0.1091i -0.1613 - 0.2141i& O) U5 A2 Y) U& r5 c! m
w$ X% R+ l6 V9 y8 v+ N, Z) U. [5 Uans =
1 X4 D& m, B# }! k8 r
# G! R2 S4 u2 j( O, H* s. i8 ^ 3 8
; s' t: |. O' ]. |! I9 w e0 Y J
: Q2 o7 Q M* I8 [8 @上面的程序是计算矩阵每一行的8点ifft,故结果是每一行的ifft有8个元素,而计算矩阵 Y 每一行的 ifft,关键语句为:4 g! h* o6 D9 J, }: r8 y
! o8 D9 K" O* {$ x: F. E. N! j8 ~$ x% y
X = ifft(Y,n,2),里面的2,如果去掉2,则是对矩阵Y的每一列计算ifft,测试如下:- ~: K$ N+ n9 D
+ U7 r" P: A: F, Y, i% o/ T
- clc
- clear
- close all
- % The ifft function allows you to control the size of the transform.
- %
- % Create a random 3-by-5 matrix and compute the 8-point inverse Fourier transform of each row.
- % Each row of the result has length 8.
- Y = rand(3,5)
- n = 8;
- X = ifft(Y,n)
- size(X)
+ Z0 @, R/ Z4 O7 `9 G4 s
0 \- O( Q/ q& J% S" @4 }! U B" K4 ^# K6 |7 ~
Y =
7 f7 A1 n- [% k' f2 T$ G' R! N3 W' l! [5 |1 i: E
0.1419 0.7922 0.0357 0.6787 0.3922
, ?$ C1 [6 |0 W# j \- Q' U' F 0.4218 0.9595 0.8491 0.7577 0.6555
; s* M6 [; f& \" I5 u8 ~ 0.9157 0.6557 0.9340 0.7431 0.1712
) l9 Y9 \& a* ^: c f+ J" s7 a; [( |9 T1 ]
X =0 \. A s6 p$ K l7 G5 X( R
, n/ {5 `0 q0 p$ T$ S0 A 1 至 4 列
8 {% b5 @. Y* e8 f0 N! ^; W/ Z ?- ^
; v* ~6 G0 q' s/ p( g 0.1849 + 0.0000i 0.3009 + 0.0000i 0.2274 + 0.0000i 0.2725 + 0.0000i
% ^% m9 K! n: Y. U* x; _ 0.0550 + 0.1517i 0.1838 + 0.1668i 0.0795 + 0.1918i 0.1518 + 0.1599i
3 N7 |5 d8 J" y -0.0967 + 0.0527i 0.0171 + 0.1199i -0.1123 + 0.1061i -0.0080 + 0.0947i1 T. q& f. P1 Z# E
-0.0195 - 0.0772i 0.0142 + 0.0028i -0.0706 - 0.0417i 0.0179 - 0.0259i
1 n1 g& u2 P$ k+ Z 0.0795 + 0.0000i 0.0611 + 0.0000i 0.0151 + 0.0000i 0.0830 + 0.0000i
6 @9 C0 F8 J" r8 b# X0 p -0.0195 + 0.0772i 0.0142 - 0.0028i -0.0706 + 0.0417i 0.0179 + 0.0259i
" D- I0 N g; g -0.0967 - 0.0527i 0.0171 - 0.1199i -0.1123 - 0.1061i -0.0080 - 0.0947i
- t* a, v4 {1 m% w 0.0550 - 0.1517i 0.1838 - 0.1668i 0.0795 - 0.1918i 0.1518 - 0.1599i k; Q- r) J, ~: S: Y2 J7 j) ]4 x
' K0 C5 M* ?% n 5 列% I. Z( D! E2 k6 x' `% e# K* i
( W' s1 j: W) R9 u
0.1524 + 0.0000i
. A9 R7 ^1 C5 `& ~ 0.1070 + 0.0793i3 R0 o8 p1 ~% T9 ~, \ N
0.0276 + 0.0819i
6 n3 g B( W& R& i -0.0089 + 0.0365i( l' f7 s& H) k( G
-0.0115 + 0.0000i
: L$ d' n5 V% j3 r+ h, `7 z -0.0089 - 0.0365i
. e' I4 r1 V! n$ X# b3 t' M 0.0276 - 0.0819i; E3 R* j% C( S2 I/ I3 n! r- O* E* ?' @
0.1070 - 0.0793i+ L, W: T3 D! {% W& S
: P. K# M+ I( ^; d% mans =
( _( V7 a3 |3 S" t1 z3 q0 h+ \- _6 t
8 5
4 V) B' C: v; p) \' U- W* R! o
. J9 Z( o+ A& v
/ |. V; s& p# }% lConjugate Symmetric Vector
0 B( d1 |9 D* U# \! W1 m/ h5 a/ Z8 b t/ F. o
For nearly conjugate symmetric vectors, you can compute the inverse Fourier transform faster by specifying the 'symmetric' option, 1 w! P/ L9 d+ V2 l2 |( ^' [* B! b
which also ensures that the output is real. Nearly conjugate symmetric data can arise when computations introduce round-off error.8 v' d9 B% \* }/ {% M4 N# |
4 R( j4 T# }* K9 { t. G j' e* m# XCreate a vector Y that is nearly conjugate symmetric and compute its inverse Fourier transform. ' g4 v; J2 X1 O) _4 L
Then, compute the inverse transform specifying the 'symmetric' option, which eliminates the nearly 0 imaginary parts.
% s. w& d7 X( P+ \6 M" ^8 U' z2 r6 ^, p% }8 b ?7 ~6 }
对于近似共轭对称矢量,您可以通过指定“symmetric”选项来更快地计算逆傅里叶变换,这也确保了输出是真实的。 当计算引入舍入误差时,可能出现几乎共轭的对称数据。1 F2 m" ^+ j* ~& D6 |
) w$ w& m, Y9 [+ Q) ` Z8 p创建几乎共轭对称的向量Y并计算其逆傅里叶变换。然后,计算指定'对称'选项的逆变换,它消除了近0虚部。- K" k- f1 J9 o
W( @& ?; x& C* L1 v# ]0 s. z# K
- clc
- clear
- close all
- % For nearly conjugate symmetric vectors, you can compute the inverse Fourier transform faster by specifying the 'symmetric' option,
- % which also ensures that the output is real. Nearly conjugate symmetric data can arise when computations introduce round-off error.
- %
- % Create a vector Y that is nearly conjugate symmetric and compute its inverse Fourier transform.
- % Then, compute the inverse transform specifying the 'symmetric' option, which eliminates the nearly 0 imaginary parts.
- Y = [1 2:4+eps(4) 4:-1:2]
- % Y = 1×7
- %
- % 1.0000 2.0000 3.0000 4.0000 4.0000 3.0000 2.0000 ⋯
- X = ifft(Y)
- % X = 1×7 complex
- %
- % 2.7143 + 0.0000i -0.7213 + 0.0000i -0.0440 - 0.0000i -0.0919 + 0.0000i -0.0919 - 0.0000i -0.0440 + 0.0000i -0.7213 - 0.0000i ⋯
- Xsym = ifft(Y,'symmetric')
- % Xsym = 1×7
- %
- % 2.7143 -0.7213 -0.0440 -0.0919 -0.0919 -0.0440 -0.7213 ⋯
\2 C( j9 h/ y; Y1 ?
* ^* e$ d8 h$ I* J& C9 @1 a* w+ }( }) F+ P+ ]2 c l
' T/ d6 z( {) b; T7 o) N4 t- o) M5 @/ ^
结果如下:% j- O6 Y+ D6 ?+ ^ I9 p
7 ~# Z. B" q5 P9 d: ^4 J4 p
Y =1 d8 I$ }5 A* h( |3 `+ ]* r$ D3 ]/ n2 [
+ M; o! A' D- e& L# t: {( M$ C
1.0000 2.0000 3.0000 4.0000 4.0000 3.0000 2.0000
4 ?1 o6 w) Y+ a" M# i% h! k$ O
. A* R+ X! @( f, ~X =6 N+ K% t1 A O2 |& e v4 N
, x: z& _# r' R& w* Y# g$ m 1 至 4 列9 a/ K. m5 C9 z; b, a0 O
, t Y0 K, j2 Y
2.7143 + 0.0000i -0.7213 + 0.0000i -0.0440 - 0.0000i -0.0919 + 0.0000i0 H- n# K1 T* q! z$ v4 `
0 i3 c9 W/ {0 {- \ 5 至 7 列
7 A$ d* p2 @: w! f- p/ f3 c& \' n* ]% P% ]
-0.0919 - 0.0000i -0.0440 + 0.0000i -0.7213 - 0.0000i8 E( c) p# s- Z0 Q- c( s: n% n
7 Q$ I( o3 }: NXsym =( U E3 H; Q, U# z, M8 G; _+ q4 Q
* y5 B4 B. n% Q; V2 b+ a 2.7143 -0.7213 -0.0440 -0.0919 -0.0919 -0.0440 -0.7213. [8 D( {) U$ _% Z8 v, d
5 n* @8 x* d4 i4 b! M& p- n0 u
1 E: o+ e L5 K* ]7 D" e/ B
1 M) L+ }9 `* _8 J" g n
2 S) V' X3 E' X# t& R$ u
' d. ]; `& c9 M
7 z- ]- n* G" p' ~6 G. M
6 O- Z" {0 @ C; N
7 X6 a3 y1 m/ D+ t" V( e1 m+ G1 x( B Y) G: F1 Z
|