EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
3 x, C6 `( O; R- N$ P
案例分析 Inverse Transform of Vector Padded Inverse Transform of Matrix Conjugate Symmetric Vector
% f* F* ^6 y- r; I5 u; l% o. j$ O) ]& b$ p5 V3 P
案例分析
7 @4 m$ x) E+ q5 ?+ S) _Inverse Transform of Vector5 d4 |8 T, n/ j$ Z8 X" B. @/ q) N
1 I) ~6 e J7 W! g- % The Fourier transform and its inverse convert between data sampled in time and space and data sampled in frequency.
- %
- % Create a vector and compute its Fourier transform.
- X = [1 2 3 4 5];
- Y = fft(X)
- % Y = 1×5 complex
- %
- % 15.0000 + 0.0000i -2.5000 + 3.4410i -2.5000 + 0.8123i -2.5000 - 0.8123i -2.5000 - 3.4410i ⋯
- %
- % Compute the inverse transform of Y, which is the same as the original vector X.
- ifft(Y)
- % ans = 1×5
- %
- % 1 2 3 4 5
% t. v- V; V; x4 Q9 Y% V - c% q; a3 Y. a2 q1 p9 H `
j9 a O3 a( Z& _! w
3 q3 R6 t C( k( z; Z. z' j. K
" A7 Y2 `4 S$ {1 r结果如下:1 E. ^ m Q; g N$ [
' ^ L" {% U A1 ?- O+ |! D' p
ifft_vector5 ]$ c4 x) ~, v" z' N8 _
& G% F2 }6 W) G$ w; L# W0 X' ~) H* q
Y =$ F$ `0 {5 o6 c- Q" {( N& d
$ q( s; c# g& ?5 _
1 至 4 列, N0 k5 |7 e% ]+ S' T( J$ ?) p1 v
. p7 {1 Q! v0 u* T# w& {1 L 15.0000 + 0.0000i -2.5000 + 3.4410i -2.5000 + 0.8123i -2.5000 - 0.8123i
6 u4 x: t. H; S( J3 O5 j' F( v) w4 D/ i+ I7 o5 s% u/ p
5 列6 z% ?6 s7 {: I* w2 r3 L/ S# T
( i! C9 h1 G/ s. N0 q! g$ P8 o
-2.5000 - 3.4410i
/ m7 g) z, R3 I8 X& i3 r
* ]& T' K9 ~, vans =
3 {3 l- ^* e& l0 ?8 @8 D9 _6 q8 D: X
1 2 3 4 5
( }! _3 f5 v/ W, L
`# d# u+ N+ k( [8 o% Y z( M$ l
. E. \4 p- @" l) v) s7 A' z% _: EPadded Inverse Transform of Matrix! t, x, s: R5 ^" Z
- clc
- clear
- close all
- % The ifft function allows you to control the size of the transform.
- %
- % Create a random 3-by-5 matrix and compute the 8-point inverse Fourier transform of each row.
- % Each row of the result has length 8.
- Y = rand(3,5)
- n = 8;
- X = ifft(Y,n,2)
- size(X)# p& D# ^) n/ E4 E6 S6 h
7 b. L% J% p( @4 N' S7 C: x) ~
- M4 v. F9 \/ o- Y4 X+ d9 d. P) N
- m$ u% s0 m% d
- K! Q2 [& y, i结果如下:! l2 q3 D$ Q! k/ U( i
7 Y% J/ t' m7 {- a* V$ }
Y =( p( @/ ~2 _* H! b
4 ^) l; q. Q( D7 c ?% i 0.8147 0.9134 0.2785 0.9649 0.9572
0 t2 l7 Z; Y& Z$ R. Q4 Y 0.9058 0.6324 0.5469 0.1576 0.4854
" A2 |* K1 h4 B' C& I4 x }1 Z 0.1270 0.0975 0.9575 0.9706 0.8003) F- r* |( T( I4 r6 ?8 k$ M0 c
) _ Y' f- g, d# \
X =
- F5 w: s: q% A. R$ p2 n" `/ L) W1 }: v4 q
1 至 4 列( y# @" [: O% U5 O% p
1 m O5 Y1 v, ?) Z* X 0.4911 + 0.0000i -0.0224 + 0.2008i 0.1867 - 0.0064i -0.0133 + 0.1312i, F, m: o/ n+ r2 ]% Q9 j7 ~
0.3410 + 0.0000i 0.0945 + 0.1382i 0.1055 + 0.0593i 0.0106 + 0.0015i
0 L8 C+ f( M. R9 Z 0.3691 + 0.0000i -0.1613 + 0.2141i -0.0038 - 0.1091i -0.0070 - 0.0253i
4 y, R. `7 w' ]- {8 b p! l- s! N) z. ~9 ~* t, y- Y' |
5 至 8 列2 u# x) V R! |/ A/ t0 z+ x1 l7 K
3 S* [) C$ L, p. a 0.0215 + 0.0000i -0.0133 - 0.1312i 0.1867 + 0.0064i -0.0224 - 0.2008i9 W [$ w: Q- `* {
0.1435 + 0.0000i 0.0106 - 0.0015i 0.1055 - 0.0593i 0.0945 - 0.1382i
; J- C: q: v d4 E' Z0 U 0.1021 + 0.0000i -0.0070 + 0.0253i -0.0038 + 0.1091i -0.1613 - 0.2141i( z' l/ c1 ^- {$ G+ X$ z% k3 g6 x! O
4 n! X/ p7 Y9 [+ B* l
ans =
/ S+ u$ Z6 u; \+ l
, G6 F; A' w1 A 3 8 V2 J \7 d& N! w; a2 C
9 \7 l! E& b7 F, p* s! j+ J8 b上面的程序是计算矩阵每一行的8点ifft,故结果是每一行的ifft有8个元素,而计算矩阵 Y 每一行的 ifft,关键语句为:/ E8 @; ]# X# W- o" U( W( h* y
4 Y: u, X' W. h0 O/ h; g
X = ifft(Y,n,2),里面的2,如果去掉2,则是对矩阵Y的每一列计算ifft,测试如下:
/ i/ S# c+ K5 c8 V, {" F+ q6 a6 T8 C% V* e& g3 m
- clc
- clear
- close all
- % The ifft function allows you to control the size of the transform.
- %
- % Create a random 3-by-5 matrix and compute the 8-point inverse Fourier transform of each row.
- % Each row of the result has length 8.
- Y = rand(3,5)
- n = 8;
- X = ifft(Y,n)
- size(X)0 U+ U1 I) ^6 Z8 h( {; ~
( y! u) j$ h) t* M; G
. [# G+ Q( Q' ^+ F: V1 k7 k
Y =' n6 f% E. l# W- S4 O2 P- N8 p
" n9 q$ @9 e3 v. k7 o) ]) { 0.1419 0.7922 0.0357 0.6787 0.3922
! V2 T$ `) m- g4 g; |% { 0.4218 0.9595 0.8491 0.7577 0.6555' G! {) i/ ?1 a" B: R" q
0.9157 0.6557 0.9340 0.7431 0.1712! A/ A- t5 H8 |0 z* Y
% r% Y* N; V: n$ D5 x- ?9 |
X =4 {* V6 a u! F7 b5 ?6 G
6 a( D1 e6 Z+ c" n+ n3 z) T+ c
1 至 4 列
# k- k2 l8 Q4 D5 h# I) P* j( T- u% s1 i2 i: L
0.1849 + 0.0000i 0.3009 + 0.0000i 0.2274 + 0.0000i 0.2725 + 0.0000i6 A, @5 T( Y8 E5 E8 G7 N1 G8 ^$ ?
0.0550 + 0.1517i 0.1838 + 0.1668i 0.0795 + 0.1918i 0.1518 + 0.1599i' b" f$ M% R' }% v: s, [
-0.0967 + 0.0527i 0.0171 + 0.1199i -0.1123 + 0.1061i -0.0080 + 0.0947i
- o' Z5 A, D& J8 _4 J$ x -0.0195 - 0.0772i 0.0142 + 0.0028i -0.0706 - 0.0417i 0.0179 - 0.0259i
, m6 \: p |% t& H: n 0.0795 + 0.0000i 0.0611 + 0.0000i 0.0151 + 0.0000i 0.0830 + 0.0000i
7 k' C$ i- V% i( c2 p. [# b -0.0195 + 0.0772i 0.0142 - 0.0028i -0.0706 + 0.0417i 0.0179 + 0.0259i
: H& D% e6 G8 A; @1 ?+ z% l% y7 m" r -0.0967 - 0.0527i 0.0171 - 0.1199i -0.1123 - 0.1061i -0.0080 - 0.0947i
4 u, W% c+ g' S- g% X" a7 R1 j9 F% U 0.0550 - 0.1517i 0.1838 - 0.1668i 0.0795 - 0.1918i 0.1518 - 0.1599i
$ C. r6 B1 o B5 C2 l8 R0 B
# B, N( ]8 y6 q6 Y5 r7 e 5 列3 x- j- f( H$ p3 z4 g* H; I" E* j
6 U* m9 R% c" g7 H% V" T& x, ` 0.1524 + 0.0000i/ {- C, i8 d+ r8 A, Z
0.1070 + 0.0793i/ B" c7 U( \+ t9 p1 o
0.0276 + 0.0819i
7 {5 q. k- [" J# M! O -0.0089 + 0.0365i
9 C* a- y8 l7 K6 U4 j1 j -0.0115 + 0.0000i
4 R. j0 k. K8 L6 H8 y4 f7 B. r/ x -0.0089 - 0.0365i" j5 N- k( G" Q( d+ j& Y
0.0276 - 0.0819i8 G: j# Z. d; B9 i/ |& J- l0 T
0.1070 - 0.0793i: I' M. r3 u& Q& D, A# s! F
7 ~; ^8 w% j! N8 ]
ans =
8 J" R- u; c6 d! q
1 S" o, [ R" B* J 8 5* b3 e/ I' F3 N/ A+ G% n. N. W
+ @5 w2 F. s# T2 Z1 z" U5 T5 U! t) M: i! I. @2 {
Conjugate Symmetric Vector
, u$ Q! t. r7 G' K
3 K& d6 e4 i6 t4 }# w* T8 fFor nearly conjugate symmetric vectors, you can compute the inverse Fourier transform faster by specifying the 'symmetric' option,
3 q5 v' E! w* M5 _' Twhich also ensures that the output is real. Nearly conjugate symmetric data can arise when computations introduce round-off error.
0 f' L+ b. a6 U$ X. S4 B, a) T5 s- i! v7 I
Create a vector Y that is nearly conjugate symmetric and compute its inverse Fourier transform. 4 h/ M+ u, v2 _2 ^
Then, compute the inverse transform specifying the 'symmetric' option, which eliminates the nearly 0 imaginary parts.2 W8 T; S1 }6 K6 _6 {- ?
! h! r/ w* b6 ^7 k对于近似共轭对称矢量,您可以通过指定“symmetric”选项来更快地计算逆傅里叶变换,这也确保了输出是真实的。 当计算引入舍入误差时,可能出现几乎共轭的对称数据。2 }/ U5 P1 }# j( l
3 c1 g6 X( r, [创建几乎共轭对称的向量Y并计算其逆傅里叶变换。然后,计算指定'对称'选项的逆变换,它消除了近0虚部。
3 ~1 ?) g' h5 q& x1 F
' D. w7 f& P! ]" C U" K ]- clc
- clear
- close all
- % For nearly conjugate symmetric vectors, you can compute the inverse Fourier transform faster by specifying the 'symmetric' option,
- % which also ensures that the output is real. Nearly conjugate symmetric data can arise when computations introduce round-off error.
- %
- % Create a vector Y that is nearly conjugate symmetric and compute its inverse Fourier transform.
- % Then, compute the inverse transform specifying the 'symmetric' option, which eliminates the nearly 0 imaginary parts.
- Y = [1 2:4+eps(4) 4:-1:2]
- % Y = 1×7
- %
- % 1.0000 2.0000 3.0000 4.0000 4.0000 3.0000 2.0000 ⋯
- X = ifft(Y)
- % X = 1×7 complex
- %
- % 2.7143 + 0.0000i -0.7213 + 0.0000i -0.0440 - 0.0000i -0.0919 + 0.0000i -0.0919 - 0.0000i -0.0440 + 0.0000i -0.7213 - 0.0000i ⋯
- Xsym = ifft(Y,'symmetric')
- % Xsym = 1×7
- %
- % 2.7143 -0.7213 -0.0440 -0.0919 -0.0919 -0.0440 -0.7213 ⋯
3 L- m& C- q- S! z2 X
" V' n. z# x3 V/ y2 v0 U' t" N0 i
+ w* s! @$ n/ R8 T9 w. V4 r, e! G5 l1 D
- U: |5 d" g8 T- J; d: u/ B结果如下:: u. K) E9 Z8 q) c8 F3 T
: @0 m* M9 |# o" g% VY =
* h) d4 K; P8 R! K
) L+ @# G2 h- [) A D 1.0000 2.0000 3.0000 4.0000 4.0000 3.0000 2.0000
5 B6 y4 |- L8 U- c& _" I
/ y2 U, V( h7 B- SX =
) x/ e$ t O5 ]% }, [# _; g4 y+ U! l# ]
1 至 4 列
$ M3 M( b* p1 m, l- V
4 q0 B3 b. z6 p: i 2.7143 + 0.0000i -0.7213 + 0.0000i -0.0440 - 0.0000i -0.0919 + 0.0000i/ H: Y1 F3 z" }
5 K2 a8 H4 C# i! q; ~$ P
5 至 7 列
! z, r5 C& L# L$ `2 O& B9 H
- f" [, K3 b$ c" A -0.0919 - 0.0000i -0.0440 + 0.0000i -0.7213 - 0.0000i
6 B' m B8 a* t Q2 _" P: l# u2 f" L7 R! G" T
Xsym =( y# p- H; y X" N% w- |5 ^
- k i2 t7 G# T6 O3 J3 i- r
2.7143 -0.7213 -0.0440 -0.0919 -0.0919 -0.0440 -0.7213
: l- U3 }% U1 o# K( j1 O2 m' Y- g" C' M" M; J
9 l8 J+ d% J' P# I2 Z) [( B
8 w n" N, {; Z
* P8 F; q& [0 J, \5 ~$ z. p
6 b) n! v& e3 o
; J. ^, ~: d* O" |, N/ q1 H; k
% p1 r1 v% }! s" o/ W. i0 |! j5 z: l; A, r5 g6 l/ @6 s E# k; o
) |3 t, ^! D& E3 m |